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a b s t r a c t

There are at least two general theories for building probabilistic–dynamical systems: one isMarkov theory
and another is quantum theory. These twomathematical frameworks share many fundamental ideas, but
they also differ in some key properties. On the one hand, Markov theory obeys the law of total probability,
but quantum theory does not; on the other hand, quantum theory obeys the doubly stochastic law, but
Markov theory does not. Therefore, the decision about whether to use a Markov or a quantum system
depends on which of these laws are empirically obeyed in an application. This article derives two general
methods for testing these theories that are parameter free, and presents a new experimental test. The
article concludes with a review of experimental findings from cognitive psychology that evaluate these
two properties.

© 2009 Elsevier Inc. All rights reserved.
Markov theory is a general mathematical framework for de-
scribing probabilistic–dynamical systems, which is commonly
used in all areas of cognitive science (Townsend&Ashby, 1983). For
example, it is the mathematical framework that underlies random
walk/diffusion models of decision making, or stochastic models of
information processing, or multinomial processing tree models of
memory retrieval, as well as many other applications. Quantum
theory provides an alternative general mathematical framework
for describing probabilistic–dynamical systems (Gudder, 1988). In
fact, these two mathematical frameworks share many fundamen-
tal ideas, but they also differ in some key properties. The purpose of
this article is to identify and empirically test some basic properties
that distinguish these theories. It will be shown that, on the one
hand, Markov theory obeys the law of total probability, but quan-
tum theory does not; on the other hand, quantum theory obeys
the doubly stochastic law, but Markov theory does not. Therefore,
the decision about whether to use a Markov or a quantum system
depends onwhich of these laws are empirically obeyed in an appli-
cation. The research described below examines whether there are
cognitive situations that violate the Markov properties and obey
the quantum properties instead.
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The article is organized as follows. First, we describe a new
experiment on categorization and decision making that provides
an empirical data set suitable for comparing the two systems.
Second, Markov and quantum models are presented in a parallel
fashion to examine their fundamental similarities and differences,
and the basic testable properties of each model are presented.
Finally, the empirical findings are used to test and evaluate the
basic properties of each system.

1. Categorization — Decision making paradigm

Townsend (Townsend, Silva, Spencer-Smith, & Wenger, 2000)
introduced a new paradigm to study the interactions between
categorization and decisionmaking, whichwe discovered is highly
suitable for testing Markov and quantum models. We recently
replicated and extended their earlier work using the following
experimental methods. On each trial, participants were shown
pictures of faces, which varied along two dimensions (face width
and lip thickness). Two different distribution of faces were used:
On average a ‘narrow’ face distribution had a narrow width and
thick lips; on average a ‘wide’ face distribution had a wide width
and thin lips. The participants were asked to categorize the faces
as belonging to either a ‘good’ guy or ‘bad’ guy group, and/or they
were asked to decide whether to take an ‘attack’ or ‘withdraw’
action. The primary manipulation was produced by using the
following four test conditions, presented in different trials, to
each participant. In the C-then-D condition, participants made a
categorization followed by an action decision; in the D-then-
C condition, participants made an action decision followed by a

http://www.elsevier.com/locate/jmp
http://www.elsevier.com/locate/jmp
mailto:jbusemey@indiana.edu
http://dx.doi.org/10.1016/j.jmp.2009.03.002


424 J.R. Busemeyer et al. / Journal of Mathematical Psychology 53 (2009) 423–433
categorization; in the C-Alone condition, participants only made
a categorization; and finally in the D-Alone condition, participants
only made an action decision.
This paradigm provides a straightforward test of a classical

information processing model called general recognition theory
(Ashby & Townsend, 1986). According to this theory, on each trial,
the presentation of a face produces a perceptual image, which
is represented as a point within a two-dimensional (face width,
lip thickness) perceptual space. Furthermore, each point in the
perceptual space is assigned to a ‘good’ guy (denoted G) or ‘bad’
guy (denoted B) category response label; and at the same time,
each point is also assigned a ‘withdraw’ (denoted W) or ‘attack’
(denoted A) action. Let G&W represent the set of points that are
assigned to the ‘good’ guy category and the ‘withdraw’ action;
and analogous definitions apply to form the sets G&A, B&W , and
B&A. Thus the probability of categorizing the face as a ‘good’
guy and taking a ‘withdraw’ action, denoted Pr(G&W ), equals
the probability of sampling a face that belongs to the G&W set
of points; the other three probabilities, Pr(G&A), Pr(B&W ), and
Pr(B&A), are determined in an analogous manner. The marginal
probability of taking a ‘defensive’ action is determined by the law
of total probability:

Pr(A) = Pr(G&A)+ Pr(B&A) = Pr(G) Pr(A|G)+ Pr(B) Pr(A|B). (1)

The categorization–decision paradigm provides a simple test of
the law of total probability. In particular, this paradigm allows one
to compare (i) the probability of taking an ‘attack’ action obtained
from the D-Alone condition with the total probability computed
from the C-then-D condition, and (ii) the probability of making
a ‘good’ guy categorization obtained from the C-Alone condition
with the total probability computed from the D-then-C condition.
Townsend et al. (2000) reported chi-square tests of (i) at the .05
significance level. They found that with narrow faces, 38 out of
138 participants produced statistically significant deviations; with
wide faces, 34 out of 138 did so. These numbers are much higher
than what is expected by chance alone (using a significance level
at .05 the expected number is only (.05)(138) = 6.9).
How can we explain these violations of the law of total

probability? Quantum probability theory may provide an answer
because it does not necessarily obey this law. However, it obeys a
different law, called double stochasticity. Therefore, we also need
to examine the latter property within the categorization–decision
paradigm. However, Townsend et al. (2000) only reported the
chi-square statistics, and not the original choice proportions, and
so it is not possible to evaluate the double stochasticity using
their report. For this reason, we conducted a new experiment that
replicated and extended their original findings, which is described
below.

1.1. Method

Participants
In total, 26 undergraduate students from a Midwest University

participated in the study. Of them, 84.6%were female; 92.31%were
Caucasian; and 7.69% were African American. The average age was
21.23 (SE = .22). The participantswere awardedwith extra course
credit. In addition, theyweremotivated to performwell in order to
win bonus credit points on top of the base participation credit.
Stimuli
Each participant viewed a series of faces on a computer.

Thirty-four headshots of Caucasian men were selected from the
photograph book Heads (Kayser, 1985). The photos were digitally
scanned and then altered using the Adobe Photoshop CS3 software
to enhance the manipulated features: (1) half of the faces were
narrow and with thick lips, and the other half were wide with
thin lips; (2) the ratio between the face width (between temples)
and the face height (between the chin and the top of the head)
was .83 (SD = .05) for the wide faces and .60 (SD = .02) for
the narrow faces; and (3) the ratio between the lip thickness and
the lip width was .22 (Std = .05) for thin lips and .38 (SD =
.05) for thick lips. Other features of the faces were controlled:
all faces had neither hair nor makeup; all showed calm and non-
emotional facial expression; and all were 15 cm from chin to the
top of the head when presented on the experiment computers.
Using a separate group of students (N = 6), a pretest asking about
the features of the face showed that the manipulation of the face
shapes and lip thickness was significant.
As noted above, the faces vary according to two salient cues,

the face shape (wide vs. narrow) and the lip thickness (thin vs.
thick), which were probabilistically related to the categories. As
in the study by Townsend et al. (2000), the wide faces with thin
lips had a 60% chance to be assigned to the ‘Adok’ group, and
40% to be a ‘Lork’. The narrow faces had a 40% chance to be the
‘Adok’ group, and 60% to be a ‘Lork’. Then, for the Adoks, they had
a 70% chance for the correct action to be ‘friendly’ or ‘withdraw’
and 30% to be ‘hostile’ or ‘attack’. For the Lorks, they had a 30%
chance for the correct action to be ‘withdraw’ and 70% to be ‘attack’.
Participants were given full information about the cues and the
associated probabilities (not numerically, but in natural language)
during the instruction at the beginning of an experimental session.
(See the Appendix for exact instructions).
Experimental procedure
Participantswere run in groups of two to seven,with office cube

separation to minimize distraction. Each participant completed
two experimental sessions during the same daytime hours on two
consecutive days. Each experiment session lasted around 40 min
and was implemented in MediaLab. The first session included
Blocks 1–4 and the second session included Blocks 5–7.
For Blocks 1–6, each block included 34 trials with one trial

for each face stimulus. The 34 trials were randomly divided into
two groups, with one group including eight wide faces and nine
narrow faces, and the other group including the rest of the 17
faces. Then, these two groups were randomly assigned to the two
conditions: categorization then decision (C-then-D) and decision
then categorization (D-then-C). The 17 trials within a group were
randomized. Which group was presented first in a block was also
randomized.
During each C-then-D trial, first, a face was presented at the

center of the computer screen for 10 s while the categorization
question was asked at the top of the screen: ‘‘Is this face an
Adok or a Lork?’’ After the participant clicked a response key, the
face remained on the screen but the categorization question was
replaced immediately by the action decision question: ‘‘Would you
be friendly or defensive?’’ After a response was made, a feedback
page was presented on the screen for three seconds. This page
included feedback for both responses. For an ‘‘Adok’’ categorization
response, if the face was pre-assigned as Adok, the feedback
would be ‘‘Yes! It was an Adok’’. If the face was pre-assigned as
Lork, it would be ‘‘No! It was not an Adok, but a Lork’’. For a
‘‘Lork’’ response, the feedback follows the same logic and format.
For a ‘‘Friendly’’ action decision response, if the Adok was pre-
assigned to be ‘friendly’ or ‘withdraw’, the feedback would be
‘‘Yes! You are friendly to a friendly Adok. The Adok handed you
$ 20’’. If it was pre-assigned to be ‘hostile’ or ‘attack’, the feedback
would say: ‘‘No! You were friendly to a hostile Adok. You were
mugged’’. By the same token, feedbackwas given to other response
combinations. To facilitate the feedback information processing,
the key words of ‘‘yes’’ and ‘‘no’’ were highlighted using green and
red color responsively, a small picture of the face (6 cm from the
chin to the top of the head) was presented with the feedback, and
a similar sized picture showing the action consequences (i.e., 20
dollars, being mugged). For both questions, the participant had
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up to 10 s to make a response using the ‘‘A’’ or ‘‘L’’ keys marked
on the keyboard. If the participant failed to click either of these
two keys within 10 s, a window popped up saying ‘‘The time limit
for this question has passed’’. A missing data was recorded by the
MediaLab program. The D-then-C trials were the same as the C-
then-D trials except for the order of the two questions.
Trials in Block 7 were different from those in the other blocks.

It included 68 trials, with two trials for each face—one asking the
categorization question and the other asking the action decision
question. Again, each question was given up to 10 s to answer,
but the feedback page duration was reduced to two seconds since
the information was simpler. All trials were randomized for each
participant.
For all blocks, after the feedback was presented at the end of

a trial, the computer asked: ‘‘Are you ready for the next trial?’’ To
proceed, the participants needed to click a ‘‘continue’’ key marked
on the keyboard. This allowed the participants to pace themselves
through trials to reduce possible fatigue effects.

1.2. Results

Recall that participants were given instructions about the
statistical relations between face types and categories, and
between categories and actions. As a result, there were no
systematic changes in choices across the first six blocks. Therefore,
the choice proportions for each person were pooled across the
first six blocks. The proportions for the C-then-D and D-then-C
conditions are based on 51 trials per person times 26 persons,
resulting in a sample size of N = 1326. The proportions for the
D-Alone and C-Alone conditions are based on 17 trials per person
times 26 persons, resulting in a sample size of N = 442.
Themain results of the experiment are summarized in Table 1.1.

The first group of three rows compare results from the C-then-D
versus D-Alone conditions; the next group of three rows compare
the results from the D-then-C versus C-Alone condition. The
third group of three rows re-analyze the data from the D-then-C
condition assuming a C-then-D order (which is discussed in more
detail later in this section). The first column of the table indicates
that the resultswere computed separately for trials using each type
of face (wide versus narrow). The next four columns (2 through 5)
indicate the probabilities of category and action responses, and the
column labeled TP contains the total probability computed from
the previous four columns. The last column indicates the choice
probability from the last block of the experiment when only a
single response was made. The difference between the TP column
and the last column indicates the deviation from the prediction of
the law of total probability.
First compare the TP versus Pr(A) columns obtained from the

C-then-D versus D-Alone condition in the first group of three
rows (labeled G1) in Table 1.1. The law of total probability is
practically satisfied for the wide faces (.37 versus .39), but it is
violated for the narrow faces (.59 versus .69). In fact, the proportion
of ‘attack’ actions in the D-Alone condition (.69) is higher than
both proportions (conditioned on categorization) obtained in the
C-then-D condition for narrow faces (.41, .63). We computed the
difference between TP and Pr(A) for each participant for narrow
faces and found that 77% (20 out of 26) participants produced
a difference in this direction. Furthermore, the t-test based on
the difference scores for narrow faces was statistically significant
(t(25) = 2.54, SE = .034, p = .018, two tailed).
Next consider the results obtained from the D-then-C versus

C-Alone condition in the second group of three rows (labeled
G2) in Table 1.1. Once again the law of total probability is
generally satisfied. However, these results may be misleading for
the following reason. Townsend et al. (2000) originally pointed
out that the C-then-D processing order is more natural than
Table 1.1
Experimental results.

G1 C-then-D D-Alone

Type Pr(G) Pr(A|G) Pr(B) Pr(A|B) TP Pr(A)
W .84 .35 .16 .52 .37 .39
N .17 .41 .83 .63 .59 .69

G2 D-then-C C-Alone

Type Pr(A) Pr(G|A) Pr(W ) Pr(G|W ) TP Pr(G)
W .40 .73 .60 .84 .80 .79
N .60 .15 .40 .28 .20 .23

G3 D-then-C re-analyzed as C-then-D D-Alone

Type Pr(G) Pr(A|G) Pr(B) Pr(A|B) TP Pr(A)
W .80 .37 .20 .53 .40 .39
N .20 .45 .80 .64 .60 .69

G4 Average C-then-D D-Alone

Type Pr(G) Pr(A|G) Pr(B) Pr(A|B) TP Pr(A)
W .82 .36 .18 .53 .39 .39
N .19 .43 .81 .63 .59 .69

QM C-then-D D-Alone

Type Pr(G) Pr(A|G) Pr(B) Pr(A|B) TP Pr(A)
W .82 .36 .18 .53 .39 .39
N .19 .40 .81 .61 .57 .74

the D-then-C order. In other words, participants may implicitly
categorize faces first under the D-then-C condition, but report
them second according to instructions. If this is true, then we
would not expect any violations of the law of total probability.
This is because we would be estimating the same probability
of making a categorization first for both the D-then-C condition
and the C-Alone condition. Townsend et al. (2000) checked the
assumption that participants implicitly categorized first in the
D-then-C condition by re-analyzing this joint frequency data
assuming a C-then-D order. They found that this re-analysis
very closely reproduced their findings from the C-then-D order.
They concluded that under the D-then-C instructions, participants
mentally processed the information in the more natural C-then-D
order and simply reported these mental computed results in the
D-then-C order.
We followed Townsend et al. (2000) and re-analyzed the D-

then-C frequencies to compute the probabilities shown in the third
group of three rows (labeled G3) in Table 1.1. This re-analysis very
closely replicates all of the results shown in the first group of
three rows obtained from the C-then-D condition. This suggests
that perhaps participants did mentally process the information
in the C-then-D order (even though asked to do the D-then-C
order), and simply reported these results in the D-then-C order.
Note that the law of total probability is again practically satisfied
for the wide faces (.40 versus .39), but it is once again violated
for the narrow faces (.60 versus .69). As before, the proportion
of ‘attack’ actions in the D-Alone condition (.69) is higher than
both proportions (conditioned on categorization) obtained from
the D-then-C condition for narrow faces (.45, .64). We again
computed the difference between TP and Pr(D) for each participant
for narrow faces, and found that 62% (16 out of 26) participants
produced a difference in this direction. Furthermore, the t-test
based on the difference scores for narrow faces was statistically
significant (t(25) = 2.19, SE = .037, p = .037, two tailed). The
correlation between the differences obtained from the C-then-D
versus D-then-C conditions was r = .92 for narrow faces, which
indicates a great deal of commonality between the two sets of
results.
The fourth group of three rows (labeled G4) show the results

when we average across the C-then-D and D-then-C conditions (as
if the latterwere processed in the C-then-Dorder). Again,we tested
the differences [TP − P(D)], now averaged across orders, for the
narrow faces, and the t-test is again significant (t(25) = 2.4, SE =
.035, p = .02, two tailed).
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2. Comparison of Markov and quantummodels

Below we empirically evaluate Markov and quantum models
for the categorization–decision task using the average data for the
C-then-D processing order (shown in the fourth group of rows in
Table 1.1). First we present two-dimensional state models, and we
show that both of these fail to explain the data for different reasons.
Later we develop and compare more complex four-dimensional
Markov and quantum models using the same data.

2.1. Two-dimensional Markov model

To fix ideas, we start by formulating a simple two-dimensional
Markov model based on serial information processing and classic
probabilities. According to this simple model, there is a set of two
category states C = {|G〉 , |B〉} and a set of two action states D =
{|A〉 , |W 〉}. If the C-then-D order is used to perform the task, then
we assume that the decisionmaker starts in a state in C andmakes
a category response, and then transfers to one of the states in D to
choose an action. The 2 × 1 column vector PI =

[
pG
pB

]
represents

the initial probabilities for the two category states (which depend
on the type of face). This is a probability distribution, and so the
entries in PI are non-negative and sum to one. The 2×2matrix T =[
TAG TAB
TWG TWB

]
represents the probabilities of transiting from each

category (column) state to each action (row) state (observed from
the C-then-D condition). In particular, Tij represents probability of
transiting to state i from state j. This is a transition matrix and
so the entries within each column are non-negative and the rows
within each column sum to one. The final probability of taking
each action (observed under the D-Alone condition) is given by the
matrix product:

PF = T · PI =
[
PFA
PFW

]
=

[
pG · TAG + pB · TAB
pG · TWG + pB · TWB

]
, (2)

which is the same as the law of total probability given by Eq. (1).
This Markov model has three parameters {pG, TAG, TAB} that are

estimated from four data points {Pr(G), Pr(A|G), Pr(A|B), Pr(A)} for
each type of face. For the wide faces, if we set pG = .82, TAG =
.36, TAB = .53, then we exactly recover Pr(G), Pr(A|G), Pr(A|B)
and we predict PFA = .39, which exactly matches the observed
value Pr(A) = .39. But for the narrow faces, if we set pG = .19,
TAG = .43, TAB = .63, then we exactly recover the data for
Pr(G), Pr(A|G), Pr(A|B), but the model predicts PFA = .59, whereas
the observed value is significantly larger, Pr(A) = .69. In summary,
this simple Markov model fails because it requires the law of total
probability, which is violated for the narrow faces.

2.2. Two-dimensional quantum model

Now we develop a simple two-dimensional quantum model
based on serial information processing and probability amplitudes.
According to quantum theory, amplitudes are basic, and probabil-
ities are derived from their squared magnitudes (Feynman & Hi-
bbs, 1965). In general, an amplitude is a complex number with a
magnitude less than one: q = r · [cos(θ) + i · sin(θ)], i =

√
−1,

r ∈ [0, 1], θ ∈ [0, 2π). Its squared magnitude equals q · q∗ =
(r · [cos(θ) + i · sin(θ)])(r · [cos(θ) − i · sin(θ)]) = r2 ≤ 1. The
parameter, θ , is called the phase, and if θ = 0 or θ = π , then q
is real. (See the Appendix for a Hilbert space representation of this
model).
Once again we assume that there are two category states C =

{|G〉 , |B〉} and two action states D = {|A〉 , |W 〉}. If the C-then-
D order is used to perform the task, then it is assumed that the
decision maker starts in one of the states in C to make a category
response, and transfers to one of the states in D to select an action.
The 2×1 column vectorQI =

[
qG
qB

]
represents the initial amplitudes

for the category states (which depend on the type of face). The
probability of initially observing the ‘good’ category equals Pr(G) =
|qG|2, and similarly Pr(B) = |qB|2, and so the squared length
of QI must equal one. The 2 × 2 matrix U =

[
UAG UAB
UWG UWB

]
represents the amplitudes for transiting from each category state
to each action state. In quantum theory, this is a unitary matrix,
UĎU = UUĎ

= I , so that it preserves inner products, which is
required for a Hilbert space representation (see Appendix). The
transition probabilities observed under the C-then-D condition are
determined by the squaredmagnitudes of the entries in the unitary
matrix. Specifically, Tij(Uij) =

∣∣Uij∣∣2 is the probability of observing
an action i given that a previous category response jwas observed.
A unitary matrix produces a transition matrix T (U) that is doubly
stochastic: both the rows and columns of the transition matrix
generated by U sum to one (Peres, 1998). The final amplitude of
taking each action under the D-Alone condition is given by the
matrix product:

QF = U · QI =
[
QFA
QFW

]
=

[
qG · UAG + qB · UAB
qG · UWG + qB · UWB

]
, (3)

which can be interpreted as the law of total amplitude (Gudder,
1988). The probability ofmaking an ‘attack’ decision in theD-Alone
condition equals

|QFA|2 = (qG · UAG + qB · UAB)(qG · UAG + qB · UAB)∗

= |qG|2 |UAG|2 + |qB|2 |UAB|2 + 2 · |qG||UAG||qB||UAB| · cos(θ), (4)

where θ is the phase of the complex number (qG · UAG) · (qB ·
UAB)∗. The law of total amplitude produces a probability (Eq.
(4)) that violates the law of total probability (Eq. (1)) because of the
interference term2·|qG|·|UAG|·|qB|·|UAB|·cos(θ). If the interference
term is zero (i.e., cos(θ) = 0), then the probability produced by
the law of total amplitude (Eq. (4)) agrees with the law of total
probability (Eq. (1)). However, if cos(θ) > 0, then Eq. (4) produces
a higher probability than Eq. (1), as found in the data. In general,
the interference can be positive, negative, or zero, depending on
the phase θ .
This quantum model requires only three parameters {|qG|2 ,

|UAG|2 , cos(θ)} to fit the four data points {Pr(G), Pr(A|G), Pr(A|B),
P(A)}. To see why, first note that double stochasticity implies that
|UWG|2 = 1 − |UAG|2 = |UAB|2 and |UWB|2 = 1 − |UWG|2 =
|UAG|2, and so the transition matrix produced by U has only one
free transition probability |UAG|2. To fit the narrow face data, we
set |UAG|2 = .40, which implies that |UAB|2 = .60 (which
approximates the observed transition probabilities Pr(A|G) = .43
and Pr(A|B) = .63, respectively). We also set |qG|2 = .19, which
exactly reproduces Pr(G) = .19. Finally, if we set cos(θ) = .333,
then Eq. (4) produces |QFA|2 = .69, which exactly reproduces Pr(D)
obtained from condition D-Alone. Note that the use of cos(θ) =
.333 implies that complex amplitudes are required to fit the data.
Unfortunately, the quantummodel fails to explain thewide face

data. The reason is that the transition matrix observed under the
C-then-D condition strongly violates double stochasticity, which
is generated by U . Note that for the wide face data, the observed
values, Pr(A|B) = .53 and 1−Pr(A|G) = 1−.36 = .64 are far apart,
but according to the quantummodel, they are required to be equal.
In summary, this two-dimensional quantum model fails because
it requires the law of double stochasticity, which is violated for
the wide face data. See Khrennikov (2007) for a two-dimensional
amplitude theory that does not use unitary operators. Below we
develop the four-dimensional models.



J.R. Busemeyer et al. / Journal of Mathematical Psychology 53 (2009) 423–433 427
2.3. Four-dimensional Markov model

Next we develop a more sophisticated Markov model that
assumes four combination states: S = {|G, A〉 , |G,W 〉 , |B, A〉 ,
|B,W 〉}. For example, the state |G,W 〉 represents a state in which
the decision maker believes a face belongs to the ‘good’ category
and the decision maker intends to take the ‘withdraw’ action.
According to this model, the decision maker can switch from one
state to another (or remain in the same state) at each moment in
time. The 4× 1 column vector PI represents the initial probability
distribution across the four states. Each row of PI gives the
probability of starting at one of the states in S, and the consecutive
rows are symbolized as (pGA(0), pGW (0), pBA(0), pBW (0)). This
initial distribution depends on the experimental conditions as
follows.
Suppose the C-then-D order is used to perform the task.

Following a ‘good’ guy categorization, the second two rows of the
initial probability distribution are set to zero so that (pGA+pGW ) =
1, and this initial probability distribution is denoted PI = PG.
Following a ‘bad’ categorization, the first two rows of the initial
probability distribution are set to zero so that (pBA + pBW ) = 1,
and this initial probability distribution is denoted PI = PB. For the
D-Alone condition, it is assumed that there is some probability pG
of making an implicit ‘good’ categorization, and some probability
pB = 1 − pG of making an implicit ‘bad’ categorization so that the
initial probability distribution is a mixture PI = (pG · PG + pB · PB).
After making a categorization, the decision maker deliberates

for some period of time, t , to decide which action to take. This
deliberation process is represented by a 4 × 4 transition matrix,
T (t), which is used to determine the new distribution across states
after deliberation as follows: PF = T (t) · PI . For example, Tij(t)
determines the probability of transiting to state i ∈ S from state
j ∈ S after deliberating for a time t . The transition probabilities in
T (t) are all non-negative real numbers and the rows within each
column sum to one. It is well known (Bhattacharya & Waymire,
1990) that the transition matrix for a Markov process satisfies the
Chapman–Kolmogorov equation T (t + s) = T (t)T (s), and this
implies that the transition matrix satisfies a differential equation
called the Kolmogorov equation:

d
dt
T (t) = K · T (t). (5)

ThematrixK in Eq. (5) is called the intensitymatrix,whichhas non-
negative off-diagonal entries and the rows within each column
sum to zero in order to generate a transitionmatrix. The solution to
Eq. (5) is thematrix exponential function T (t) = eK ·t , which allows
one to construct the transition matrix for any time point from the
fixed intensity matrix. These intensities can be defined in terms of
the evidence and payoffs for actions in the task. Later we will give
an example of an intensitymatrix for this task. However, we do not
need to estimate a specific intensitymatrix, because the theoretical
property that we test holds for any transition matrix.
The 4 × 1 vector PF = T (t) · PI represents the probability

distribution across states after deliberation, and the consecutive
rows of PF are symbolized as (pGA(t), pGW (t), pBA(t), pBW (t)). The
probability of taking the ‘attack’ action equals pGA(t) + pBA(t) and
the probability of taking the ‘withdraw’ action equals pGW (t) +
pBW (t). It will be convenient to use an indicator matrix to select
these choice probabilities. Define the 4 × 4 matrix MA as a matrix
with zeros everywhere except that a one is placed in the diagonal
entry for row 1 and row 3. The vector produced by the matrix
product, MA · PF , contains the two probabilities of choosing the
‘attack’ action. We want to sum the elements of this vector, which
can be done using 1 × 4 row vector L = [1, 1, 1, 1]. Then the
probability of taking an ‘attack’ action equals L · (MA · PF ). Using
these definitions we obtain the following probabilities for the C-
then-D conditions:

P̂r(A|G) = L · (MA · T (t) · PG) (6)
P̂r(A|B) = L · (MA · T (t) · PB).

The probability for the D-Alone condition is equal to

P̂r(A) = L ·MA · T (t) · (pG · PG + pB · PB)
= pG · L · (MA · T (t) · PG)+ pB · L · (MA · T (t) · PB)

= pG · P̂r(A|G)+ pB · P̂r(A|B). (7)

Once again, we see that this more general Markov model satisfies
the law of total probability, and consequently, it still fails to
account for the violations found with the narrow faces. One might
question the assumption that pG = Pr(G) and pB = Pr(B) in
Eq. (7), where Pr(G) and Pr(B) are the observed probabilities of
categorization from condition C-then-D, whereas pG and pB are
implicit probabilities that operate under the D-Alone condition.
However, even if we allow for this change in the probabilities of
categorization across conditions, this Markov model fails because
NO convex combination (weighted average) of Pr(A|G) and Pr(A|B)
from the C-then-D condition can equal Pr(A) observed in condition
D-Alone. This is because the latter exceeds both of the former,
whereas a convex combination must lie in between.

2.4. Four-dimensional quantum model

Now we turn to a four-dimensional quantum model, and again
we assume four combination states: S = {|G, A〉 , |G,W 〉 , |B, A〉 ,
|B,W 〉}. As before, the state |G,W 〉 represents a state in which the
decision maker believes a face belongs to the ‘good’ guy category
and the decision maker intends to take the ‘withdraw’ action.
According to this model, the decision maker is in a superposition
over states that evolves across time. The 4 × 1 column vector
QI represents the initial amplitude distribution (quantum wave)
across the four states. Each row of QI gives the amplitude for
one of the states in S, and the consecutive rows are symbolized
as (qGA(0), qGW (0), qBA(0), qBW (0)). Each amplitude is a complex
number and the sum of squared magnitudes equals one (|QI |2
= 1). As described for the Markov model, this initial distribution
depends on the experimental conditions as follows.
Suppose the C-then-D order is used to perform the task.

Following a ‘good’ categorization, the second two rows of the
initial amplitude distribution are set to zero so that |qGA|2 +
|qGW |2 = 1, and this initial amplitude distribution is denoted
QI = QG. Following a ‘bad’ categorization, the first two rows of
the initial distribution are set to zero so that |qBA|2 + |qBW |2 = 1,
and this initial amplitude distribution is denoted QI = QB. For
the D-Alone condition, it is assumed that the decision maker is
superposed between these two categorization states so that the
initial amplitude distribution is QI = (qG · QG + qB · QB), with
|qG|2 + |qB|2 = 1.
After making a categorization, the decision maker deliberates

for some period of time, t , to decide which action to take. A 4 × 4
unitary matrix, U(t), is used to determine the new superposition
across states after deliberation as follows: QF = U(t) · QI . For
example, Uij(t) determines the amplitude for transiting to state
i ∈ S from state j ∈ S after deliberating for a time t . The
matrixU(t)must satisfyU(t)ĎU(t) = I to preserve inner products.
The squared magnitude, Tij = |Uij(t)|2, equals the probability of
transiting to state i ∈ S from state j ∈ S, and this transition matrix
still satisfies double stochasticity. It is well known (Gudder, 1988)
that the transition matrix for a quantum process also satisfies the
amplitude version of the Chapman–Kolmogorov equation U(t+ s)
= U(t)U(s), and this implies that the unitary matrix satisfies a
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differential equation called the Schrödinger equation:

d
dt
U(t) = −i · H · U(t). (8)

The matrix H in Eq. (8) is called the Hamiltonian matrix, which
must be Hermitian, HĎ

= H , in order to generate a unitary
matrix. The solution to Eq. (8) is the matrix exponential function
U(t) = e−i·H·t , which allows one to construct the unitarymatrix for
any time point from the fixed Hamiltonian matrix. The elements
of the Hamiltonian can be defined in terms of the evidence and
payoffs for actions in the task. In a later section, we select a
specific Hamiltonian to fit the observed choice probabilities. For
now, we examine the general theoretical properties that hold for
any unitary matrix.
The 4 × 1 vector QF = U(t) · QI represents the amplitude

distribution across states after deliberation, and the consecutive
rows of QF are symbolized as (qGA(t), qGW (t), qBA(t), qBW (t)). The
probability of observing an ‘attack’ action equals |qGA(t)|2 +
|qBA(t)|2 and the probability of observing the ‘withdraw’ action
equals |qGW (t)|2 + |qBW (t)|2. Once again, it will be convenient
to use an indicator matrix to select these choice probabilities.
As before, define the 4 × 4 matrix MA as a matrix with zeros
everywhere except that a one is placed in the diagonal entry for
row 1 and row 3. The vector produced by the matrix product,
MA·QF , contains the twoamplitudes for choosing the ‘attack’ action.
The probability of the ‘attack’ action equals the squared length
of this vector: |MA · QF |2. Using these definitions we obtain the
following probabilities for the C-then-D conditions:

QA|G = MA · U(t) · QG, P̂r(A|G) = |QA|G|2 (9)

QA|B = MA · U(t) · QB, P̂r(A|B) = |QA|B|2.

The probability of an ‘attack’ for the D-Alone condition is equal to

P̂r(A) = |MA · U(t) · (qG · QG + qB · QB)|2

= |qG · (MA · U(t) · QG)+ qB · (MA · U(t) · PB)|2

= |qG · QA|G + qB · QA|B|2

= |qG · QA|G|2 + |qB · QA|B|2

+ 2 · |qG · qB · (Q
Ď
A|G · QA|B)| · cos(θ)

= pG · P̂r(A|G)+ pB · P̂r(A|B)

+ 2 · |qG · qB · (Q
Ď
A|G · QA|B)| · cos(θ), (10)

where θ is the phase of the complex number qG · qB · (Q
Ď
A|G · QA|B).

Once again, we see that the law of total probability fails for
the quantum model whenever the interference term 2 · |qG ·
qB · (Q

Ď
A|G · QA|B)| · cos(θ) 6= 0. But what about the issue of

double stochasticity? Although this model does satisfy the law
of double stochasticity, this property is now defined in terms of
the 4 × 4 transition matrix between combinations in S. Note
that the event Pr(A|B) is no longer a transition between states
in S for this model, and instead, it is the probability of a coarse
measurement (projection on two states). This four-dimensional
state space model no longer implies that Pr(A|B) = 1 − Pr(A|G).
In fact, in the next section, we show that the four-dimensional
quantum model provides an adequate fit to all of the data.

2.5. Fitting models to data

In this section we describe more specifically how we apply the
four-dimensional models to the categorization–decision experi-
mental results. Themodels used here are based on an earlier appli-
cation of these same models to a prisoner dilemma task in which
players made choices based on either knowledge or no knowledge
of an opponent’s action (Pothos & Busemeyer, 2009). The capabil-
ity of using the same models for these very different tasks demon-
strates the generality of thismodeling approach. Note that the spe-
cific Markov model presented belowmust fail because it must sat-
isfy the lawof total probability for any parameters, butwe continue
to present a specific version of it in order to identify the similarities
and differences between this model and the quantum model.
Consider again the C-then-D order of processing. When a ‘good’

guy categorization is made, then initial state for theMarkovmodel
is denoted PG with elements set to pBA = pBW = 0 and pGA =
pGW = .5; similarly the initial state for the quantum model is
denoted QG with elements set to qBA = qBW = 0 and qGA = qGW =√
.5.When a ‘bad’ guy categorization is made, then the initial state
for the Markov model is PB with elements pGA = pGW = 0 and
pBA = pBW = .5; similarly the initial state for the quantum model
is QB with elements qGA = qGW = 0 and qBA = qBW =

√
.5. For

the D-Alone condition, we assume that PI = pG · PG + pB · PB,
where pG = Pr(G) is the probability of categorizing a face as a
‘good’ guy and pB = Pr(B) is the probability of categorizing a face
as a ‘bad’ guy; similarly, for the quantum model, we assume that
QI =

√
pG · QG +

√
pB · QB, where pG and pB have the same values

as defined for the Markov model. This assumption implies that the
initial choice probabilities for action at time t = 0 are uniformly
random when the decision maker has no time to deliberate about
the best action to take after categorizing the face.
After categorizing the face, the decision maker deliberates for

some period of time t and then chooses an action. For the Markov
model, this is based on the final probability distribution PF =
et·K · PI , where K is the intensity matrix; for the quantum model,
this is based on the final amplitude distribution QF = e−i·t·H ·
QI , where H is the Hamiltonian matrix. (The matrix exponential
function used in these calculations is available in most matrix
algebra programming languages such as Matlab or R or Gauss.)
These matrices (K for Markov and H for quantum) are assumed
to be determined by two factors: one is used to change action
preferences and the other is used to change category beliefs. More
specifically, K = Kd + Kb and H = Hd + Hb, where Kd and Hd
change the action preferences, and Kb and Hb change the category
beliefs, for the Markov and quantum models, respectively. Let us
first consider the part that determines the preferences for actions
(Kd and Hd).
For theMarkovmodel, we set Kd =

[
1 0
0 0

]
⊗KdG+

[
0 0
0 1

]
⊗KdB

with KdG =
[
−µG 1
µG −1

]
and KdB =

[
−1 µB
1 −µB

]
. The submatrix KdG

transforms the initial probabilities toward favoring the ‘withdraw’
action when the decision maker believes the face is a ‘good’ guy,
and the other submatrix KdB transforms the probabilities toward
favoring an ‘attack’ action when the decision maker believes the
face is a ‘bad’ guy. The parameters, µG and µB, are assumed
to be a function of the gains and losses produced by correctly
or incorrectly choosing an action for each category. To help
understand this part of themodel, assume that a ‘bad’ guy category
response is observed so that PI = PB. Then the probability of taking
an ‘attack’ action equals

P̂r(A|B) = L ·MA · et·Kd · PB

=

(
µB

1+ µB

)
·
(
1− e−(µB+1)·t

)
+
1
2
· e−(µB+1)·t . (11)

For µB > 0, this probability starts at 12 at t = 0 and grows

monotonically toward an equilibrium
(

µB
1+µB

)
as t →∞.

For the quantum model, we set Hd =
[
1 0
0 0

]
⊗ HdG +[

0 0
0 1

]
⊗ HdB, where HdG =

[
−µG 1
1 µG

]
and HdB =

[
µB 1
1 −µB

]
.
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The submatrix HdG rotates the initial amplitudes toward favoring
the ‘withdraw’ action when the decision maker believes the
face is a ‘good’ guy, and the other submatrix HdB rotates the
amplitudes toward favoring an ‘attack’ action when the decision
maker believes the face is a ‘bad’ guy. To help understand this part
of the model again, assume that a ‘bad’ guy response is observed
so that QI = QB. Then the probability of taking an ‘attack’ action
equals

P̂r(A|B) = |MA · e−i·t·Hd · QB|2

=
1
2
+

(
µB

1+ µ2B

)
· sin(t)2. (12)

For −1 < µB < 1, this probability increases monotonically
across time from 1

2 at t = 0 to
(
1
2 +

µB
1+µ2B

)
at t = (π/2),

and subsequently it oscillates between these minimum and
maximum values. Empirically, choice probabilities in laboratory-
based, decision making tasks increase monotonically across time
(at least for relatively short decision times), and so a reasonable
approach for fitting the model is to assume that a decision is
reachedwithin the interval (0 < t < π/2) for the quantummodel
(t = π/2would correspond to around 2 s for such tasks). Hereafter
we will set t = π/2 for all calculations from the quantum model.
Using only Kd (for the Markov model) and Hd (for the quantum

model) produces reasonable choice models for the C-then-D
processing order when the category response is known. However,
for condition D-Alone, when the category response is unknown,
bothmodels predict that the probability of defection is the average
of the two known cases, which fails to explain the violations of the
law of total probability. Although this is expected from theMarkov
model, this may be somewhat unexpected for the quantummodel.
The problemariseswith the quantummodel because in this special
case Q Ď

A|G · QA|B = 0 and there is no interference.
For the quantummodel to explain violations of total probability,

we need to introduce the idea of cognitive dissonance (Festinger,
1957): People tend to change their beliefs to be consistent with
their actions. In the case of the category–decision paradigm,
category beliefs tend toward consistency with the intended action.
In otherwords, if the decisionmaker intends to ‘attack’ then he/she
also tends to think that the face is a ‘bad’ guy. Thus both beliefs
and action tendencies evolve and influence each other across time
during the deliberation period. Next we show how these changes
in beliefs can be included in both models. However, we also show
that including the dissonance effect only helps the quantummodel
and does not change the basic predictions of the Markov model.
For the Markov model this dissonance effect can be produced

by using

Kb = KbA ⊗
[
1 0
0 0

]
+ KbW ⊗

[
0 0
0 1

]
,

where

KbA =
[
−γ 1
γ −1

]
and KbW =

[
−1 γ
1 −γ

]
.

The submatrix KbA changes beliefs toward a ‘bad’ guy category
when the decision maker tends toward an ‘attack’ action, and the
other submatrix KbW changes beliefs toward a ‘good’ guy category
when the decision maker tends toward a ‘withdraw’ action. For
example, if P ′I =

( 1
4

) [
1 1 1 1

]
and γ = 5, then PF = eKb · PI

produces final probabilities[
pGA = .08 pGW = .42 pBA = .42 pBW = .08

]
.

For the quantum model, we set

Hb = HbA ⊗
[
1 0
0 0

]
+ HbW ⊗

[
0 0
0 1

]
,

where

HbA = γ ·
[
−1 1
1 1

]
and HbW = γ ·

[
1 1
1 −1

]
.

The submatrixHbA rotates beliefs toward a ‘bad’ guy categorywhen
the decision maker tends toward an ‘attack’ action, and the other
submatrix HbW rotates beliefs toward a ‘good’ guy category when
the decisionmaker tends toward a ‘withdraw’ action. For example,
if Q ′I =

( 1
2

) [
1 1 1 1

]
and γ = 1/

√
2, then QF = e−i·Hb · QI

produces final probabilities[
|qGA|2 = .07 |qGW |2 = .43 |qBA|2 = .43 |qBW |2 = .07

]
.

But using Kb or Hb alone does not change the choice probabilities
for the actions. Therefore, we need both factors, K = Kb + Kd for
the Markov model, and H = Hb + Hd for the quantum model, to
simultaneously change beliefs and actions.
Using K = Kd + Kb for the Markov model, the probabilities

for the D-Alone condition are related to the probabilities for the
C-then-D condition by expressing the initial probabilities for the
D-Alone condition in terms of a mixture of the initial probabilities
conditioned on each categorization response:

L ·MA · PF = L ·MA · e(Kd+Kb)·t · PI
= L ·MA · e(Kd+Kb)·t · (pG · PG + pB · PB)
= pG · L ·MA · e(Kd+Kb)·t · PG

+ pB · L ·MA · e(Kd+Kb)·t · PB. (13)

One can see from the above equation that the ‘attack’ probability
for D-Alone condition is again a weighted average of the
probabilities conditioned on each category response. Therefore, as
expected, including the dissonance effect does not help, and the
Markov model still cannot explain violations of the law of total
probability observed for the narrow faces. Using H = Hd + Hb for
the quantum model, the amplitudes for the D-Alone condition are
related to the amplitudes for the C-then-D condition by expressing
the initial amplitudes for the D-Alone condition in terms of a
superposition of the amplitudes for the two categorized states:

MA · QF = MA · e−i·(Hd+Hb)·t · QI
= MA · e−i·(Hd+Hb)·t · (qG · QG + qB · QB)
= qG ·MA · e−i·(Hd+Hb)·t · QG + qB ·MA · e−i·(Hd+Hb)·t · QB.

(14)

One can see from the above equation that the amplitudes that
determine the ‘attack’ decision for the D-Alone condition are a
superposition of the amplitudes conditioned on each category
response. However, the probabilities are obtained by squaring the
magnitudes of the amplitudes corresponding to each action, and
now the interference arises because Q Ď

A|G ·QA|B 6= 0. The dissonance
effect causes these two vectors to become non-orthogonal.
Altogether, both of the four-dimensional models, Markov and

quantum, require estimating four parameters {|qG|2 = pG, µG,
µB, γ } from four data points {Pr(G), Pr(A|G), Pr(A|B), Pr(A)}. As
pointed out earlier, there do not exist any parameters that will
allow theMarkovmodel to fit these data and violate the lawof total
probability.We could introduce newhidden states into theMarkov
model to do this. For example, one could assume that there is a
fifth hidden state, |̃ G ∧ ˜B〉, which is only entered in the D-Alone
condition. Then the law of total probability would fail because
Pr(A) includes a contribution from this hidden state that does not
appear in either Pr(A|B) or Pr(A|G). However, this five-dimensional
Markov model is so complex that it can fit any pattern of data for
the present experiment, and so we will not pursue that here.
The quantum model can fit the results, but in order to provide

a one degree of freedom test, we need to constrain at least one
parameter for each condition. For thewide face condition, we fixed
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γ = 0 and used the estimates |qG|2 = .82, µG = .14, µB =
.03. These predictions are shown in the bottom group of rows in
Table 1.1, and they exactly reproduced the observed proportions
for the average data processed in the C-then-D order. For the
narrow face condition, we fixed µB = 1 and used the estimates
|qG|2 = .19, µG = −.35, γ = .96; these predictions are also
shown in the bottom group of rows in Table 1.1. The predictions
for the narrow faces are close but not perfect, yet they succeed in
reproducing the basic pattern of the violation of the law of total
probability observedunder this condition. In summary, theMarkov
model can fit the data for the wide faces but it cannot fit the data
for the narrow faces using any parameters; the quantum can fit
both the wide and narrow face conditions, but not perfectly for the
narrow faces, and this requires three parameters to fit four data
points, which is not very impressive at this point. Furthermore,
we do not have an explanation for the differences between narrow
and wide face results. Clearly, more theoretical work and stronger
experimental tests are needed.

3. Discussion

3.1. Empirical case for interference effects

Empirical violations of the law of total probability are often
called interference effects. One of the main reasons for the
invention of quantum theory by physicists was to explain
interference effects observed in particle physics (Feynman&Hibbs,
1965). Now researchers have observed interference effects with
human choices, which motivates the application of quantum
probability to this domain (Khrennikov, 2004). What is the
collection of evidence for these interference effects?
The first example of interference effects was obtained from

studies using a two-stage gambling paradigm (Tversky & Shafir,
1992). Participants decided whether or not to play a gamble a
second time after winning or losing the first time. When told
that they won the first play, 69% chose to play again; when told
that they lost the first play, 59% chose to play again; but when
the first play was unknown only 36% chose to play again. The
law of total probability implies that the unknown probability
should be a weighted average of the two known probabilities,
which is dramatically violated in this study. Tversky and Shafir
(1992) found this result in two separate experiments: one using
a within-subjects design where each person experienced all three
conditions, and the other using a between-subjects design using
a different group of people for each condition. More recently,
however, these results were not replicated in a series of studies
(Kuhberger, Komunska, & Perner, 2001).
The second example of interference effects were obtained using

a prisoner dilemma game (Shafir & Tversky, 1992). Participants
decided whether or not to defect depending on knowledge of an
opponent’s decision. When told that the opponent will defect,
97% chose to defect; when told that the opponent will cooperate,
84% chose to defect; but when the opponent’s strategy was
unknown, only 63% chose to defect. Once again, the law of total
probability implies that the unknown probability should be a
weighted average of the two known probabilities, which is clearly
violated in this study. This finding was replicated by Busemeyer,
Wang, and Townsend (2006), who found 91% defection when the
opponent was known to defect, 84% defection when the opponent
was known to cooperate, and only 66% defection for the unknown
case. This pattern of results was also found, although not quite as
strongly, in (Croson, 1999; Li & Taplin, 2002).
The third example of interference effects was obtained using

a categorization–decision task in which participants were asked
to categorize and/or choose an action. Townsend et al. (2000)
found that one fourth of their participants produced statistically
significant violations of the law of total probability. We replicated
this experiment and found interference effects for the narrow
face condition: if a face was categorized as a ‘good’ guy then it
was ‘attacked’ in 43% of the trials; if a face was categorized as
a ‘bad’ guy, then it was ‘attacked’ in 63% of the trials; but when
no categorization was made, it was ‘attacked’ in 69% of the trials.
Again, no weighted average of the two known cases is equal to the
unknown case.
Finally, interference effects were recently found in a series of

four perceptual judgment tasks with impossible figures (Conte
et al., 2009). These experiments employed two conditions: In
in condition A-Alone, a single binary choice was made between
two interpretations of an impossible figure (labeled positive
versus negative); in the other condition, call it B-then-A, a binary
judgment about a different impossible figure B was made before
the judgment about figure A. Here we briefly review results of the
first of these studies,which in fact replicated the stimuli and results
from an earlier study (Conte et al., 2006). If B was given a positive
interpretation, then the proportion of positive A interpretations
was .60; if B was given a negative interpretation, then the
proportion of positive A interpretations was .375; but under the
A-Alone condition, the proportion of positive A interpretations
was .67. Furthermore, this difference was statistically significant
according to a chi-square test (p = .017). In sum, there is growing
empirical evidence for interference effects in a variety of decision
making paradigms in psychology.

3.2. Empirical case for double stochasticity

Transition matrices describe the conditional probability of
observing the next (row) state of a system conditioned on the
previous (column) state. Transition matrices require that the rows
within a column sum to one. Double stochasticity requires both the
rows and columns of a transition matrix to sum to unity. Quantum
models require double stochasticity but Markov models do not. So
what is the empirical evidence regarding double stochasticity?
The answer depends on the dimensionality of the state space.

Let us first consider the two-dimensional case, which is easier to
test. In this case, transitions from belief states B = {|B1〉 , |B2〉} to
action states A = {|A1〉 , |A2〉} produce a 2 × 2 transition matrix.
Double stochasticity requires that Pr(A1|Bi) + Pr(A2|Bi) = 1 and
that Pr(Ai|B1) + Pr(Ai|B2) = 1, and the latter constraint provides
the critical test. In other words, the probability of an action must
sum to one across the two known belief states.
For the two-stage gambling paradigm (Tversky & Shafir, 1992),

letting A1 stand for playing the gamble, and letting Bi stand for
knowledge about the outcome of the first play, then the two critical
probabilities were Pr(A1|B1) = .69, and Pr(A1|B2) = .59, which
violate the critical property. For the prisoner dilemma paradigm
(Shafir & Tversky, 1992), letting A1 represent the player’s decision
to defect and letting Bi represent knowledge of the opponent’s
action, the two critical probabilities were Pr(A1|B1) = .97,
and Pr(A1|B2) = .84, which also clearly violate this property.
For the category–decision making experiment, the conditional
probabilities (shown in Table 1.1) violate this property for the
narrow faces. In sum, double stochasticity frequently fails for the
two-dimensional transition matrix.
Rather than restricting transitions from states in B to states in

A, we could allow transitions between combination states in S =
{|G, A〉 , |G,W 〉 , |B, A〉 , |B,W 〉}. This produces a 4 × 4 transition
matrix, and the four state quantum model continues to obey the
law of double stochasticity for this 4×4 transitionmatrix (defining
transitions between states in the set S). Unfortunately, this is more
difficult to empirically test, and none of the experiments provide
a test of double stochasticity for the four-dimensional transition
matrix. Future research is needed to test double stochasticity for
the four-dimensional case.
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3.3. Theoretical explanations

How can one explain the empirical findings of interference
effects? One cannot immediately jump to the conclusion that all
Markov models fail and a quantum model is necessary. There
always remains a possibility of constructing a classic Markov
model for these effects by adding new hidden states to the model.
One cannot also jump to the conclusion that the quantummodel is
more complex. Adding new states to a Markov model can make it
considerably more complex than a smaller-dimensional quantum
model. In fact, Markov and quantummodels simply obey different
probability laws— the former obeys the lawof total probability and
the latter obeys the law of double stochasticity.
The best we can do is to compare a specific n-dimensional

Markov model with a specific n-dimensional quantum model. But
we would like to test these specific models in a parameter free
manner by using properties such as the law of total probability
or the law of double stochasticity that are defined with respect to
the model dimension. So far, we have compared specific Markov
and quantum models for the two-stage gambling paradigm and
prisoner dilemma paradigm (Pothos & Busemeyer, 2009) and
for the categorization–decision paradigm (Busemeyer & Wang,
2007). We established that a two-dimensional Markov model
fails, because it must satisfy the law of total probability (which
was violated); likewise a two-dimensional quantum model fails
because it must satisfy the law of double stochasticity for a
2 × 2 transition matrix (which was also violated). We also
established that the four-dimensional Markov model also fails
because it continues to satisfy the law of total probability
(which still fails); and we demonstrated that the four-dimensional
quantum model can approximately fit the results from all three
paradigms. Unfortunately we could not test double stochasticity
for the four-dimensional quantummodel,whichmakes the current
comparison of the Markov and quantum four-dimensional models
not exactly fair.
The four-dimensional quantum model generates the interfer-

ence effect for all three paradigms: two-stage gambling, prisoner
dilemma, and the categorization–decision, and it does so by using
the same principle. The key idea is that we assume a Hamiltonian
that contains two factors — one factor evolves preferences over
time based on payoffs in the task, and the other factor evolves be-
liefs over time. Thus preferences and beliefs evolve simultaneously
across time during deliberation leading to an action decision. Fur-
thermore, we assume that beliefs and preferences tend to evolve
toward consistency (a cognitive consistency effect). For example,
in the prisoner dilemma game, if you tend toward defecting then
you also tend to believe your opponent will defect; in the cate-
gory–decision paradigm, if you tend toward ‘attacking’ then you
also tend to believe the face is a ‘bad’ guy; in the two-stage gam-
bling paradigm, if you intend to play the gamble a second time,
then you tend to believe you are awinner. This two-factorHamilto-
nian produces a unitary transformation that entangles beliefs and
preferences over time, and this entangled state generates the in-
terference term for the action probability. In sum, the interference
depends on the parameter γ in the Hamiltonian of the quantum
model. If this is set to zero, the interference disappears; if it is pos-
itive, it rotates beliefs in amanner thatmakes themconsistentwith
preferences; if it is negative, it rotates beliefs to be inconsistent
with preferences. In all three paradigms, the sign of this parameter
was in the same direction of producing beliefs that were consistent
with preferences (i.e., γ has the same direction of effect in all three
paradigms). Finally, recall that this same principle, applied to the
intensity matrix, does not help theMarkovmodel, and it still satis-
fies the law of total probability. So we need both cognitive consis-
tency and quantum probability to produce the interference effect.
While it is encouraging that the same four-dimensional

quantum model can fit the interference effects from three quite
different paradigms, the achievement is far from convincing yet for
several reasons. First, the predictions derived from the quantum
model require three parameters to fit four data points, and much
stronger quantitative tests of the model are needed in future
studies using a much higher ratio of data points to parameters.
Second, for the categorization–decision paradigm, we have no
explanation for why interference effects occur with the narrow
faces, but not the wide faces. However, we think this is an
important beginning that could guide future experimental tests of
these models.

3.4. Psychology of Markov and quantum models

What is the psychological difference between Markov and
quantum models? How does one interpret the parameters of
these models? Markov models are already well established in psy-
chology. For example, diffusion models of signal detection (Rat-
cliff & Smith, 2004), stochastic models of information processing
(Townsend&Ashby, 1983),multinomial processing trees formem-
ory (Batchelder & Reiffer, 1999), and random walk models of deci-
sion making (Busemeyer & Townsend, 1993) are all Markov mod-
els. What we have tried to show here and elsewhere (Busemeyer
et al., 2006) is the great similarity between Markov and quantum
models. By analogy, we argue that quantummodels should be use-
ful to psychologists as well.
Both Markov and quantum models assume an initial state that

can be biased by prior information. Both Markov and quantum
models have operators that evolve belief and preference states
during deliberation before making a decision — the dynamics of
the Markov model are derived from the Kolmogorov differential
equation, and the dynamics for the quantum model are derived
from the Schrödinger differential equation. Both the Markov and
quantum models use the same kind of parameters determined by
the strength of evidence and/or the utility of actions — the Markov
model introduces these parameters into the intensitymatrix of the
Kolmogorov equation, and the quantum model introduces these
into the Hamiltonian matrix of the Schrödinger equation. Both the
Markov and quantum models derive the final choice probabilities
from the states that evolved from deliberation. The key difference
is the probability law used to derive these choice probabilities —
theMarkovmodel operates directly on probabilities and thewhole
process remains linear; the quantum model operates linearly on
amplitudes but the response probabilities are determined by their
squared magnitudes. The latter introduces a critical nonlinearity
into the whole process. In short, the psychological interpretation
of parameters is almost identical for the two models — the key
difference comes from the difference in probability laws. The use of
complex amplitudes in the quantummodel allows for interference
effects to arise from the squared magnitudes.
What are the psychological implications of these different

probability laws? The usual interpretation of the Markov model
is the following. It assumes that at any point in time during
deliberation, a person is exactly in one of the basis states. We
just do not know which one. The process steps from one basis
state to another from moment to moment during deliberation. A
single decision is the end result of a sequence of transitions that
forms a single trajectory from the beginning to the final state.
(Diffusion processes are continuous Markov processes derived by
taking the limit of small discrete state changes made in small
time increments.) A single trajectory is a deterministic function of
time, similar to generating a sequence of random numbers from
a fixed seed in a computer simulation. At the end of deliberation,
and immediately before a decision is made, the person is in a
determinant basis state. The choice made at the time of decision
simplymanifests this pre existing state. TheMarkovmodel derives
the probability distribution over all the possible trajectories (e.g.,
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assigns a probability to each seed in a computer simulation). There
is only one trajectory for any given decision and so they cannot
interfere with each other. In short, the Markov model assumes
that the brain does its processing like a particle and obeys the
probability laws for particle motion.
A way to interpret the quantum model is as follows. (There is

no uncontroversial interpretation!) It assumes the person is not
exactly in any basis state at each point in time during deliberation.
Instead the person is in a superposed state at each moment in
time. In this superposed state, all the states coexist in parallel at
any moment, and this indeterminate or fuzzy state flows across
time until the point when a decision must be made. Even for a
single decision, one cannot assume that a single (albeit unknown)
trajectory is followed. Instead, all of the indeterminate trajectories
coexist in parallel across time, producing a wave of potentialities
flowing over the states across time. Immediately before the
final decision, the person is not in a clear and determinant
basis state; and instead, the observed decision creates a clear
and determinant basis state. The quantum model derives the
probability amplitudes for all possible trajectories, and all of these
indeterminate trajectories can interfere with one another. In short,
the quantum model assumes the brain does its processing like a
wave and obeys the laws for wave motion.

3.5. Related research

In addition to our ownwork, a number of other researchers have
been developing quantum decision models for describing human
decisionmaking in different applications. Three of the earliestwere
models for interference effects with attitude questions (Aerts &
Aerts, 1994), perceptual decisions (Atmanspacher, Filk & Romer,
2004), cognitive judgments (Khrennikov, 1999), and probability
estimation (Bordley & Kadane, 1999). More recently, models of
approach-avoidance behavior have been proposed (Ivancevic &
Aidman, 2007). In this special issue, one can find applications of
quantum models to preferential choice by Mogiliansky-Lambert,
Zamir, and Zwirn, and to utility theory by La Mura, and to
probability judgments by Franco and Aerts, and finally to financial
arbitrage by Khrennikov and Haven.

Appendix A. Instructions to participants

Closely following Townsend et al. (2000), the scenario was
set up using the following instruction for the categorization then
decision (C-then-D) condition (and with small alternations for the
other conditions at the beginning of an experiment session:

‘‘You have been chosen by NASA to travel to the planet Meboo
to find out more about two colonies, the Adoks and the Lorks.
As you interact with the two colonies, you will be first asked

to categorize each face as either an ‘Adok’ or a ‘Lork’. The Adoks
tend to have round faces and thin lips, and the Lorks tend to
have narrow faces with fat lips. But, this is not absolute! As in
any culture, there is cross-over. A face with the features of an
Adok may actually be a Lork, and a face with the features of a
Lork may actually be an Adok.
You have up to 10 s to view each face (you may answer

before the 10 s are up). You should press the key ‘1’ (labeled
‘A/F’) for an ‘Adok’ or ‘2’ (labeled ‘L/D’) for a ‘Lork’.
Then, you have a choice to make: you can be friendly or

defensive to the face. Adoks have the tendency to be friendly
while Lorks tend to be hostile. This is not absolute! Since you do
not know how the individual will act towards you, make your
decision carefully.
You should press the key ‘1’ (labeled as ‘A/F’) for Friendly or

‘2’ (labeled as ‘L/D’) for Defensive. Again, you have up to 10 s to
make the decision.
You will be given feedback for your categorization and
action decision after each face. Then, click the spacebar (labeled
‘‘continue’’) to continue to the next face. There are 17 faces
following this instruction’’.

Appendix B. Hilbert space representation

The two-dimensional quantum model can be represented
as a Hilbert space model by using the following standard
quantum theory definitions and relations. First, we assume a two-
dimensional Hilbert space H2. The two category states {|G〉, |B〉}
form a pair of orthonormal basis vectors for H2, and the two action
states {|A〉, |W 〉} form another pair of orthonormal basis vectors for
H2. The two bases are related by

|G〉 = 〈A|G〉 · |A〉 + 〈W |G〉 · |W 〉 ,
|B〉 = 〈A|B〉 · |A〉 + 〈W |B〉 · |W 〉 ,

where 〈x|y〉 is the Dirac notation for the inner product between
two vectors in H . The matrix U is the transformation matrix that
transforms coordinates of {|G〉, |B〉} into coordinates of {|A〉 , |W 〉}:

U =
[
UAG UAB
UWG UWB

]
=

[
〈A|G〉 〈A|B〉
〈W |G〉 〈W |B〉

]
.

This matrix must be unitary for the following reasons. Note that

|〈A|G〉|2 + |〈A|B〉|2 = 〈A|G〉 〈G|A〉 + 〈A|B〉 〈B|A〉
= 〈A|(|G〉 〈G| + |B〉 〈B|)|A〉 = 〈A|I|A〉
= 1,

and similarly |〈W |G〉|2 + |〈W |B〉|2 = 1. Also note that

|〈A|G〉|2 + |〈W |G〉|2 = 〈G|A〉 〈A|G〉 + 〈G|W 〉 〈W |G〉
= 〈G|(|A〉 〈A| + |W 〉 〈W |)|G〉 = 〈G|I|G〉 = 1,

and similarly |〈A|B〉|2+|〈W |B〉|2 = 1. Thus both rows and columns
must be unit length. Finally, note that

〈G|B〉 = 0 = (〈G|A〉 〈A| + 〈G|W 〉 〈W |) · (〈A|B〉 |A〉 + 〈W |B〉 |W 〉)
= 〈G|A〉 〈A|B〉 + 〈G|W 〉 〈W |B〉 ,

and so the columns of U must be orthogonal. The state of the
quantum system is represented by a unit length vector in H:

|q〉 = qG · |G〉 + qB · |B〉
= qG · [〈A|G〉 · |A〉 + 〈W |G〉 · |W 〉] + qB · [〈A|B〉 · |A〉
+ 〈W |B〉 · |W 〉]

= (qG · UAG + qB · UAB) · |A〉 + (qG · UWG + qB · UWB) · |W 〉 .

For the C-then-D condition, the probability of observing each
category response is obtained by the squared projections P̂r(G) =
|〈G|q〉|2 = |qG|2 and P̂r(B) = |〈B|q〉|2 = |qB|2. After observing a
category decision, the state changes to either |G〉 following a ‘good’
guy categorization or |B〉 following a ‘bad’ guy categorization.
The probability of observing an ‘attack’ action after observing
each category response is obtained by the squared projections
P̂r(A|G) = |〈A|G〉|2 = |UAG|2 and P̂r(A|B) = |〈A|B〉|2 = |UAB|2. For
the D-Alone condition, the probability of taking an ‘attack’ action
equals P̂r(A) = |〈A|q〉|2 = |(qG ·UAG+qB ·UAB)|2. These are the same
probabilities thatwe obtained from the two-dimensional quantum
model expressed as probability amplitudes.
For the four-dimensional quantum model we hypothesize a

four-dimensional Hilbert space H4. The set of four orthonormal
basis vectors S = {|GA〉 , |GW 〉 , |BA〉 , |BW 〉} forms an orthonor-
mal basis for H4. The initial state is a superposition |PI〉 = qGA ·
|GA〉 + qGW · |GW 〉 + qBA · |BA〉 + qBW · |BW 〉. Thus the initial am-
plitude vector, PI , described earlier, contains the coordinates of the
initial state |PI〉with respect to the S basis. The initial state is trans-
formed into the final state by a unitary operator: |PF 〉 = U(t) · |PI〉.
This operator must be unitary to preserve inner products, which
is required for this Hilbert space representation. The matrix rep-
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resentation of this unitary operator with respect to the S basis is
U(t) = [Uij(t)] = [〈i|U(t)|j〉 , |i〉 , |j〉 ∈ S], and this is determined
by the Schrödinger equation (8). The coordinates of the final state
vector |PF 〉with respect to the S basis are given by the final ampli-
tude vector PF = U(t) · PI . The measurement operator for the ‘at-
tack’ action is defined by the projectorMA = |GA〉 〈GA|+ |BA〉 〈BA|.
The squared projection |MA·|PF 〉 |2 equals the probability of observ-
ing an ‘attack’ action. The matrix representation of this projector
with respect to the S basis is MA = [〈i|MA|j〉 , |i〉 , |j〉 ∈ S], which,
as described earlier, is a diagonal matrix with ones in the first and
third rows and zeros elsewhere.
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