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Abstract

Quantum cognition research applies abstract, mathematical principles of quantum theory to

inquiries in cognitive science. It differs fundamentally from alternative speculations about quan-

tum brain processes. This topic presents new developments within this research program. In the

introduction to this topic, we try to answer three questions: Why apply quantum concepts to

human cognition? How is quantum cognitive modeling different from traditional cognitive model-

ing? What cognitive processes have been modeled using a quantum account? In addition, a brief

introduction to quantum probability theory and a concrete example is provided to illustrate how a

quantum cognitive model can be developed to explain paradoxical empirical findings in psycho-

logical literature.

Keywords: Quantum probability; Classical probability; Cognitive process; Compatibility; Entan-

glement; Non-Boolean logic

With astonishing counterintuitive ramifications, quantum theory is the best empirically

confirmed scientific theory in human history. It is “essential to every natural science” and

its practical applications, such as the laser and the transistor, form the direct basis of at

least one-third of our current economy (Rosenblum & Kuttner, 2006, p. 81). However,

applying quantum theory to human cognition is not merely a simple extension of a most

successful scientific theory. Rather, this endeavor is driven by a myriad of puzzling find-

ings and stubborn challenges in psychological literature, by deep resonations between

basic notions of quantum theory and psychological conceptions and intuitions, and by the
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exhibited potential of the theory to provide coherent and mathematically principled expla-

nations for the puzzles and challenges in human cognitive research (Busemeyer & Bruza,

2012).

Given the still nascent status of quantum cognition research, it is important to note that

it differs from the approaches which treat (parts of) the brain literally as material quan-

tum systems or a quantum computer (e.g., Beck & Eccles, 1992; Hameroff & Penrose,

1996; Stapp, 1993; Vitiello, 1995). In contrast, our approach applies abstract, mathemati-

cal principles of quantum theory to inquiries in cognitive science. In fact, to convey the

idea that researchers in this area are not doing quantum mechanics, various modifiers

have been proposed to describe the approach, such as cognitive models based on quantum

structure (Aerts, 2009), quantum-like models (Khrennikov, 2010), and generalized quan-

tum models (Atmanspacher, R€omer, & Walach, 2002).

This topic presents new developments within the quantum cognition modeling research

program. In the introduction to this special issue, we try to answer three questions: Why

apply quantum concepts to human cognition? How is quantum cognitive modeling differ-

ent from traditional cognitive modeling? What cognitive processes have been modeled

using a quantum account? In addition, a brief introduction to quantum probability theory

can be found in the Appendix A.

1. Why use quantum theory to build models of human cognition?

Quantum physics was created to explain puzzling findings that were impossible to

understand using traditional classical physical theories. In the process of creating quantum

mechanics, physicists also had to accept basically new ways of thinking that ultimately

included a novel understanding of probabilities. Currently, we see a similar development

happening in areas of cognitive science. Previously, almost all cognitive modeling

research has relied on principles derived from classical probability theory and mathemati-

cal principles of classical mechanics. Although tremendous progress has been achieved in

understanding cognition in this way, empirical findings have accumulated which seem

puzzling within the framework of classical probability theory. For example, in decision

research, to explain all kinds of decision fallacies and bias, various tool boxes of heuris-

tics had to be proposed to bypass or patch the classical theoretical framework (e.g., Gige-

renzer & Todd, 1999; Payne, Bettman, & Johnson, 1993; Tversky & Kahneman, 1974).

In comparison, quantum theory provides a unified and principled theoretical framework

accounting for such paradoxical findings (e.g., Busemeyer & Bruza, 2012; Busemeyer,

Pothos, Franco, & Trueblood, 2011). In particular, five enduring challenges in modeling

cognition can be re-examined in a new light from quantum theory.

First, the challenge of formalizing psychological concepts of conflict, ambiguity, and
uncertainty. Traditional cognitive models assume that at each moment, a person is in a

definite (technically, non-dispersive) state with respect to certain judgment and cognition;

however, the person’s true state is unknown to the modeler at each moment, and thus the

model can only assign a probability to a cognitive response with some value at each
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moment. This type of models is stochastic only because the modeler does not know

exactly what trajectory (i.e., the definite state at each time point) a person is following.

In this sense, the cognitive system is modeled as if its state follows a well-defined trajec-

tory in its state space. In contrast, a quantum account allows a person to be in an indefi-

nite (technically, dispersive) state, called a superposition state, at each moment in time.

Strictly speaking, this means that one cannot assume that psychological states are charac-

terized by definite values to be registered by a psychological measurement at each

moment in time. To be in a superposition state means that all possible definite values

within the superposition have potential for being expressed at each moment (Heisenberg,

1958). A superposition state provides an intrinsic representation of the conflict, ambigu-

ity, or uncertainty that people experience in cognitive processes (Blutner, Bruza, & Po-

thos, 2013; Brainerd, Wang, & Reyna, 2013; Wang & Busemeyer, 2013). In this sense,

quantum modeling allows us to formalize the state of a cognitive system moving across

time in its state space (Busemeyer, Wang, & Townsend, 2006, Atmanspacher & Filk,

2013; Fuss & Navarro, 2013) until a decision is reached, at which time the state collapses

to a definite value.

Second, the challenge of formalizing the cognitive system’s sensitivity to measure-
ments. Traditional cognitive models assume that what we measure and record at a partic-

ular moment reflects the state of the cognitive system as it existed immediately before

we measure it. For example, the answer to a judgment question simply reflects the state

regarding this question just before we asked it. One of the more provocative lessons

learned from quantum theory is that a measurement of a system both creates and records

a property of the system (Peres, 1998). Immediately before asking a question, a quantum

system can be in a superposition state. The answer we obtain from the system is con-

structed from the interaction of its state and the question that we ask (Bohr, 1958). This

interaction creates a definite or sharply defined state out of a superposition state. The

quantum principle of constructing a reality from an interaction between the person’s

indefinite state and the question being asked is consistent with the constructive view in

psychological research (e.g., Feldman & Lynch, 1988; Schwarz, 2007) and the idea that

choice can alter preference (e.g., Ariely & Norton, 2008; Sharot, Velasquez, & Dolan,

2010). In fact, it matches psychological intuition better for complex judgments, deci-

sions, and other cognitive measurements than the assumption that the measured answer

is simply a registration of a pre-existing state or retrieves a pre-existing cognitive

property.

Third, the challenge of formalizing order effects of cognitive measurements. The

change in cognitive states that results from answering one question can cause a person to

respond differently to subsequent questions (Moore, 2002). In other words, the first cogni-

tive measurement changes the context of the next measurement, and the order of mea-

surements becomes important. Such order effects have been recognized and described in

psychological and public opinion research (e.g., Moore, 2002). However, to develop for-

mal cognitive models, this means that we cannot define a joint probability of answers

simultaneously to a conjunction of questions. Instead, we can only assign a probability to

the sequence of answers. In quantum physics, order-dependent measurements are
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non-commutative operations (Atmanspacher & R€omer, 2012; Busemeyer & Wang, 2010;

Wang & Busemeyer, 2013). Many of the mathematical properties of quantum theory arise

from developing a probabilistic model for non-commutative measurements, including Hei-

senberg’s uncertainty principle proposed in 1927 (Heisenberg, 1958). Measurement order

effects, such as question order effects, are a major concern for attitude, judgment and

decision research, which seeks a theoretical understanding of the order effects similar to

that achieved in quantum theory (e.g., Feldman & Lynch, 1988; Busemeyer & Wang,

2010; Wang & Busemeyer, 2013).

Fourth, the challenge of understanding violations of classical probability laws in cog-
nitive and decision studies. Human cognition and judgment do not always obey classical

laws of logic and probability (for a review, see Busemeyer & Bruza, 2012; Busemeyer,

Pothos, Franco, & Trueblood, 2011). Classical probabilities used in current cognitive and

decision models are derived from the Kolmogorov axioms (Kolmogorov, 1933), which

assign probabilities to events defined as sets. The family of sets in the Kolmogorov

theory obeys the Boolean axioms of logic. One important axiom of Boolean logic is the

distributive axiom. From this distributive axiom, the law of total probability can be

derived, which provides the foundation for inferences with Bayes nets. However, the law

of total probability is found to be violated in many psychological experiments (e.g.,

Tversky & Shafir, 1992). Quantum probability theory is derived from von Neumann

(1932) axioms, which assign probabilities to events defined as subspaces of a vector

space. Representing events by subspaces entails a logic of subspaces and does not obey

the distributive axiom of Boolean logic (Hughes, 1989) (although they form a partial

Boolean algebra structure). This implies that quantum models do not always obey the law

of total probability (Busemeyer & Wang, 2007; Busemeyer, Wang, & Lambert-Mogi-

liansky, 2009; Khrennikov, 2010; Pothos & Busemeyer, 2009). Essentially, quantum logic

is a generalization of classical logic, and quantum probability is a generalized probability

theory. As suggested by the accumulating empirical findings that violate classical proba-

bilities principles, it is plausible that classical probability theory may be too restrictive to

explain human cognition and judgment (Aerts, Durt, Grib, Van Bogaert, & Zapatrin,

1993).

Fifth, the challenge of understanding non-decomposability of cognition. Conventionally
in cognitive science, concepts and processes are assumed to be “decomposable” so that

the whole can be understood in terms of its constituent components. This decomposability

is reflected in the common assumption that there exists a complete joint probability distri-

bution across all measurements on the cognitive system, from which one can reconstruct

a pairwise joint distribution for any pair of measurements. However, psychological litera-

ture has supplied ample findings indicating otherwise. For example, facial cognition is

hallmarked by strong reliance on holistic properties of faces (e.g., Farah, Wilson, Drain,

& Tanaka, 1998; Wenger & Townsend, 2001) and perception of ambiguous figures has

been argued to be a holistic process (e.g., Atmanspacher & Filk, 2013; Long & Toppino,

2004). Conceptual combinations cannot be decomposed into meaningful parts (Aerts,

Gabora, & Sozzo, 2013; Aerts et al., 1993; Bruza, Kitto, Nelson, & McEvoy, 2009; Blut-

ner et al., 2013). In contrast to classical models, quantum models allow us to describe
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cognitive systems as non-decomposable, and it may be the case that pairwise probabilities

cannot be derived from a common joint probability distribution. This suggests a radically

new type of correlations beyond those in classical modeling, known as entanglement cor-
relations in quantum theory.

2. How do quantum models differ from traditional models?

Four groups of key concepts and principles of quantum theory best illustrate how

quantum cognitive models differ from traditional cognitive models in the study of cogni-

tive processes. These four groups closely relate to each other but emphasize different fea-

tures of quantum theory. An illustrative example using some of the key concepts and

principles can be found in the Appendix A.

First, dispersive states and quantum probabilities. When Heisenberg and Schr€odinger
presented their different versions of the new quantum mechanics in terms of “matrix

mechanics” and “wave mechanics” in the mid-1920s, their work enabled enormous, rapid

progress in understanding the behavior of the micro-world. In three articles during 1927–
1929 (reprinted in 1962), von Neumann rigorously proved the equivalence of matrix and

wave mechanics, and introduced the mathematical framework of Hilbert space and opera-

tor calculus to develop a statistical ensemble formalism for quantum theory. It is summa-

rized in his monograph, Mathematical Foundations of Quantum Mechanics (1932), which
is still regarded as the standard reference for orthodox quantum theory. Von Neumann’s

approach is statistical because the predictions of the theory refer to ensembles of experi-

mental results so that only probabilistic predictions are possible for individual results.

It is crucial to note that the rules for quantum probabilities differ from those of classi-

cal probabilities. Not only mixed ensemble states but also pure quantum superposition

states are dispersive: They cannot be represented point-wise, as we are used to doing in

classical point mechanics. Born’s rule (Born, 1926), which defines the probability to mea-

sure a certain quantum state by the squared magnitude of its amplitude, therefore entails

interference terms that are absent in classical probability theory. This is what leads to the

non-additive nature of quantum probabilities. Furthermore, since states are changed by

measurements, quantum probabilities for transitions between states depend decisively on

prior measurements.

States of individual quantum systems are called pure states, which are represented as

vectors in a vector space (the Hilbert space). Pure states are dispersive, and every super-

position of pure states is another pure state. Another class of dispersive states is mixed

states, which are states of statistical ensembles of pure states with different probabilities.

They are also called statistical states. While dispersive pure states are considered the

source of a “genuine” (ontic) randomness in quantum theory, the dispersion of mixed

states is an ensemble property, often interpreted as expressing (epistemic) incomplete

knowledge about the exact state of the system (beim Graben & Atmanspacher, 2006).

Second, entanglement, non-local correlations, and Bell inequalities. A specific form of

quantum superposition is called quantum entanglement. This term was coined by
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Schr€odinger (1935), in connection with the seminal paper by Einstein, Podolsky, and

Rosen (1935). Entangled states exhibit acausal non-local correlations between the results

of measurements on spatially separated subsystems of a system. Entangled systems can

arise due to all kinds of interactions and entanglement is a generic feature of the quantum

world. Since these correlations are ubiquitous for entangled systems, such systems are

also called non-separable. Non-local correlations are the basis of what is often referred to

as quantum holism.

Ironically, Einstein et al. (1935), who demonstrated that quantum theory yields such

non-local correlations, concluded that they are so absurd (“spooky action at a distance”)

that quantum theory must miss essential elements of reality. John Bell (1964) proposed

how this issue can be settled empirically by measuring the size of the correlations

between pairs of variables of entangled quantum systems. Bell’s inequalities define a

bound for classical correlations which is predicted to be violated for entangled quantum

systems. Today, such non-local quantum correlations are well established empirically in

physics, and fascinating applications of them have been developed (Vedral, 2008).

The usual way of formulating Bell inequalities refers to measurements of pairs of spa-

tially separated variables. However, it is also possible to derive temporal Bell inequalities

(Leggett & Garg, 1985) for a single variable separated in time (i.e., at different time

points). Violations of temporal Bell inequalities would prove that a system states cannot

be sharply localized in time, as would always have to be in classical theory. So far, viola-

tions of temporal Bell inequalities have not been found empirically because empirically,

it is very difficult to introduce a measurement at a particular time that does not destroy a

key condition for violating the temporal Bell inequalities, namely, that the variable is in a

superposition state. (Once a measurement has been made, the state is no longer a super-

position state.)

Quantum entanglement is ubiquitous and is at the foundation of quantum theory. It

reveals that a key challenge for understanding quantum systems is how to decompose

them into subsystems, rather than how to compose them from elementary constituents.

The decomposition of an entangled system leads to subsystems that are correlated “non-

locally” (i.e., without direct causal interactions). As an interesting twist in the history of

science, quantum theory, which was originally developed to complete the atomistic pro-

gram of the 19th century physics, tells us that this atomistic picture has to be turned

upside down into a fundamentally holistic worldview.

Third, non-commuting observables and complementarity. Another distinction between

classical and quantum behavior is whether observables (i.e., measurements) are commut-

ing or non-commuting. While systems studied in classical physics are restricted to com-

muting observables, quantum systems can have both commuting (e.g., mass and charge)

and non-commuting observables (e.g., position and momentum). As discussed earlier, the

non-commutativity of observables A and B can be characterized as AB 6¼ BA. This

expresses an order effect unknown for classical observables, which obey the law of com-

mutativity, AB = BA. Any observable can be decomposed into its eigenstates. If observ-

ables A and B do not commute, they are incompatible and have no complete orthonormal

system of common eigenstates—that is, they may share some but not all eigenstates. A
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and B are maximally incompatible (or complementary) if they have no single eigenstate

in common.

As observables in quantum theory play a double role as codifications of properties of a

system and operations on the state of a system, they can also be considered “actions.” In

this sense, non-commutativity means that the action sequence of B and then A on an

initial state leads to a result different from what is produced by reversing the sequence of

the actions. The uncertainty relations introduced by Heisenberg (1927) are a direct conse-

quence of this novel feature of non-commuting observables in quantum theory.

As mentioned above, maximally incompatible observables are said to be complemen-

tary. Bohr (1928) introduced the concept of complementarity, and originally used it to

address the ambiguity of wave-like and particle-like behavior of quantum systems. It is

another interesting twist in the history of science that Bohr actually imported this concept

from psychology, where it had been coined by William James (1890a, p. 206). Edgar

Rubin, a Danish psychologist, acquainted Bohr with the idea (Holton, 1970). Bohr’s

attempt to understand the wave-like and particle-like manifestations of quantum systems

as complementary may sound simple, but it has profound and far-reaching implications. In

its narrow meaning, complementarity refers to an incompatibility of measurements that do

not commute, that is, their sequence matters for the final result. More generally, comple-

mentarity refers to descriptions that mutually exclude each other, but are jointly necessary

to describe a situation exhaustively. In this sense, complementarity refers to incompatible

aspects of a system, which cannot be combined in a single Boolean description.

Fourth, non-Boolean and partial Boolean logic, and complementarity. In the mid-

1930s, von Neumann realized a number of severe limitations of his original framework

of quantum theory and proposed two generalizations. One was an algebraic approach,

which expressed quantum theory in terms of generally non-commutative operator alge-
bras (Murray & von Neumann, 1936, 1937). This led to the development of algebraic

quantum theory and algebraic quantum field theory. The other alternative allowed a for-

malization of quantum measurements in terms of a non-classical (non-Boolean) logic of

propositions (Birkhoff & von Neumann, 1936). This led to the field of quantum logic. In

contrast to a two-valued (yes/no) logic of classical binary alternatives, where the comple-

ment of a proposition is identical with its negation, the complement of a quantum propo-

sition typically deviates from its negation. A nice colloquial example is due to William

James (1890b, p. 284): “The true opposites of belief… are doubt and inquiry, not disbe-

lief.” In the Boolean sense, the complement and negation of belief is disbelief; in the

quantum non-Boolean sense, doubt and inquiry are complements but not negations of

belief.

Quantum logic entails a violation of the Boolean law of the excluded middle or tertium
non-datur. In an early lattice theoretical formulation of quantum logic (Birkhoff & von

Neumann, 1936), this is expressed as a violation of the law of distributivity with respect

to the complement. For two propositions A and B, and the complement of A (noted as A′),
the distributive inequality reads: B ∧ (A ∨ A′) 6¼ (B ∧ A) ∨ (B ∧ A′). The significance of the
notion of the complement in non-Boolean logic underlines its tight relation to the quantum

concept of complementarity.
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The non-commutativity of quantum observables translates directly into the non-distrib-

utivity of the lattice of quantum propositions. Both formal criteria express the idea that

non-commuting observables and corresponding propositions are incompatible with one

another. In the broader sense of complementarity mentioned above, such subtle grades of

incompatibility are hard to assess, but it is still possible to talk about the compatibility or

incompatibility of propositions. The framework of propositional logic is more general

than the algebraic framework insofar as it can be applied to situations in which operators

in the sense of quantum theory are not defined. For systems exhibiting both classical and

quantum behavior, a proper logical framework is partial Boolean logic. Partial Boolean

logic involves “locally” Boolean sublattices which are pasted together in a globally non-

Boolean way (Primas, 2007). Such partial Boolean structures correspond to algebras of

observables that combine both non-commuting and commuting observables.

The above characterization, condensed and abstract, is intended to underline how gen-

eral quantum principles can be formulated. The Appendix A provides a concrete example

which illustrates how a quantum cognitive model can be developed to explain paradoxical

empirical findings in psychological literature.

3. Current quantum cognitive models

The tightly connected key features of quantum theory, as sketched in the preceding

sections, illustrate the basic procedures for using quantum theory to understand human

cognition. As mentioned, some of these key conceptions, most notably complementarity,

were proposed by psychologists before they proved to be essential for quantum physics.

However, in quantum physics, these conceptions were rigorously formalized to enable

precise empirical predictions and testing. The basic notions of quantum theory not only

represent essential features of how nature is organized but also of how our fields of

knowledge are organized, which is a key focus of cognitive science. Some of the found-

ing fathers of quantum theory, most ardently Niels Bohr, were convinced that the theory’s

central notions would prove meaningful outside of physics, in areas such as psychology

and philosophy (Murdoch, 1987; Pais, 1991).

The first steps to utilize Bohr’s proposal were made in the 1990s by Aerts and

colleagues (e.g., Aerts & Aerts, 1994; Aerts et al., 1993) and Bordley and colleagues

(Bordley, 1998; Bordley & Kadane, 1999). They used non-distributive propositional

lattices to address quantum-like behavior in non-quantum systems. Alternative approaches

have been initiated by Khrennikov (1999), focusing on non-classical probabilities, and

Atmanspacher et al. (2002), applying an algebraic framework based on non-commuting

operations with prolific results. Since 2006, Busemeyer and collaborators have success-

fully used quantum probability theory to address concrete and long-standing paradoxical

problems in decision and cognition research (Busemeyer, Matthew, & Wang, 2006a;

Busemeyer, Wang, & Townsend, 2006b; Busemeyer & Wang, 2010; see Busemeyer &

Bruza, 2012; Busemeyer et al., 2011, for reviews). Two other more recent lines of

thinking are due to Primas (2007), addressing complementary descriptions with partial
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Boolean algebras, and Filk and von M€uller (2009), proposing additional links between

basic concepts in quantum physics and psychology.

Meanwhile, there are several groups worldwide working on various topics relating to

quantum cognition. Since 2007, annual international conferences of Quantum Interaction

have fostered the exchange of new results and ideas. Also since 2007, regular tutorials and

workshops on building cognitive models using quantum probability and dynamics have

been held at annual meetings of the Cognitive Science Society and the Society for Mathe-

matical Psychology. A special issue of the Journal of Mathematical Psychology on quan-

tum cognition (Bruza, Busemeyer, & Gabora, 2009) was devoted to new developments. In

2011, the annual meeting of the Cognitive Science Society hosted a symposium addressing

some of the latest work. The popular science magazine New Scientist presented a cover

story, Your Quantum Mind, covering some aspects of the quantum cognition program on

September 3, 2011. An in-depth exchange of different formal approaches and research

directions took place at an intense expert roundtable meeting in Switzerland in July 2012.

Also in 2012, a book on Quantum Models of Cognition and Decision by Busemeyer and

Bruza was published by Cambridge University Press. So far, the rapid development of the

research program on quantum cognition has focused on the following six areas.

Decision processes. An early precursor is due to Aerts and Aerts (1994) and Bordley

(1998). Detailed applications were developed by Busemeyer, Wang, et al., (2006b, 2009),

Lambert-Mogiliansky, Zamir, and Zwirn (2009), LaMura (2009), Pothos and Busemeyer

(2009, 2013), Yukalov and Sornette (2009), and Fuss and Navarro (2013). The key idea

is to define probabilities for decision outcomes and decision times in terms of quantum

probability amplitudes in a Hilbert space model. Long-standing riddles in decision-mak-

ing literature, including the disjunction effect (Tversky & Shafir, 1992), were explained

using quantum interference (Busemeyer et al., 2006a; Khrennikov & Haven, 2009; Pothos

& Busemeyer, 2009; Yukalov & Sornette, 2009).

Ambiguous perception. A good example is bistable perception, which concerns alter-

nating views of ambiguous figures, such as the Necker cube. Atmanspacher, Filk, and

R€omer (2004) and Atmanspacher and Filk (2010) developed a detailed model describing

a number of psychophysical features of bistable perception that have been experimentally

demonstrated. In addition, Atmanspacher and Filk (2010, 2013) predicted that particular

distinguished states in bistable perception may violate the temporal Bell inequalities—a

litmus test for quantum behavior. Other research applying quantum theory to perception

of ambiguous figures has been carried out by Conte et al. (2009).

Semantic networks. The difficult issue of meaning in natural languages is often

explored in terms of semantic networks. Gabora and Aerts (2002) described the contex-

tual manner in which concepts are evoked, used, and combined to generate meaning.

Their ideas about concept association in an evolutionary context were further developed

in recent work (Gabora & Aerts, 2009; Aerts et al., 2013). Bruza et al. (2009b) explored

meaning relations in terms of entanglement-style features in quantum representations of

the human mental lexicon, and proposed corresponding experimental tests. Related work

is due to Blutner and colleagues (Blutner, 2009; Blutner et al., 2013).

Z. Wang et al. / Topics in Cognitive Sciences (2013) 9



Probability judgments. Many paradoxical phenomena of human judgment have resisted

classical probability explanations for decades and have thus been labeled as examples of

human “irrationality.” For example, people sometimes judge the probability of event A

and B to be greater than the probability of event A alone, which is called the conjunction

fallacy (Kahneman, Slovic, & Tversky, 1982; Tversky & Kahneman, 1983). The Linda

problem, as discussed in Appendix A, is a case in point. Sometimes people judge the

probability of A or B to be less than the probability of A alone, which is called the dis-

junction fallacy (Carlson & Yates, 1989). Busemeyer et al. (2011) developed a single

quantum model to account for these probability judgment “fallacies.” In addition, True-

blood and Busemeyer (2011) developed a quantum inference model to explain order

effects which can arise in sequential probability judgment tasks.

Order effects of cognitive measurements. Question order effects in surveys have been

recognized for a long time (Schwarz & Sudman, 1992) but are still insufficiently under-

stood today. In this introduction, we have discussed how quantum theory was developed

in physics to address the puzzling findings that the order of measurements can affect the

final observed probabilities. Thus, it seems natural to apply quantum probability theory to

understanding the effects of the order of measurements in human cognitive behavior

(Busemeyer & Wang, 2010; Wang & Busemeyer, 2013). To rigorously test the idea, Wang

and Busemeyer (2013) derive an a priori, exact, quantitative prediction about order effects

of attitude questions from quantum theory, which is used to empirically test the quantum

question order model. Furthermore, Atmanspacher and R€omer (2012) predicted novel

kinds of order effects and indicated potential limitations of Hilbert space representations.

Memory. Findings that are puzzling from a classical probability perspective exist in

more basic human cognitive processes as well, such as basic memory processes. One par-

adoxical phenomenon is called the episodic overdistribution effect, which can be

explained using a simple quantum model involving the superposition of memory traces

(Brainerd et al., 2013). Related to memory phenomena, Bruza and colleagues (2009b)

developed a quantum model to explain the entanglement-like behavior observed in human

mental lexicon and word association (Nelson, McEvoy, & Pointer, 2003).

These active research areas illustrate the potential of using the set of coherent concepts

of quantum theory to formalize a large variety of cognitive phenomena. These phenom-

ena often seem puzzling from the classical probability framework. Perhaps in contrast to

the common impression of being mysterious, quantum theory is inherently consistent with

deeply rooted psychological conceptions and intuitions. It offers a fresh conceptual frame-

work for explaining empirical puzzles of cognition and provides a rich new source of

alternative formal tools for cognitive modeling.
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Appendix A: Quantum probability theory

Quantum probability theory is unfamiliar to most social and behavioral scientists, so a
brief but general overview and comparison with the more familiar classical probability
theory is provided. To keep it simple, we assume finite spaces, although both probability
theories can be extended to infinite spaces. More details about these principles can be found
in Griffiths (2003) and Busemeyer and Bruza (2012). In addition, detailed quantum cogni-
tion modeling examples and MATLAB codes are offered by Busemeyer and Bruza (2012).

A.1. Comparing classical and quantum probability theories

Classical theory begins by postulating a set called the sample space, Ω, which is a set
of elements that contains all the events, and in the finite case this set has cardinality N.
Quantum theory begins by postulating a vector space (technically, a Hilbert space), V,
which contains all the events, and in the finite case this vector space has dimension N.

Classical theory is based on the premise that an event, such as A, is a subset A ⊆ Ω of
the sample space. Quantum theory is based on the premise that an event, such as A, is a
subspace A ⊆ V of the vector space. Corresponding to each subspace A is a projector,
PA, that projects points in V onto the subspace A.

Classical theory postulates that a state is represented by a function p: 2Ω [0,1], which
assigns probabilities to events. In other words, p(A) is the probability assigned to event
A ∈ Ω, and if A ∩ B = ∅, then p(A ∪ B) = p(A) + p(B). Quantum theory postulates that
a state is represented by a unit length vector w ∈ V, which assigns probabilities to events:
p(A) = ||PAw||

2 and if A ∩ B = ∅ then p(A ∪ B) = p(A) + p(B).
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Classical theory defines a conditional state, pA, that is a conditional probability function,
as follows: If event A is observed, then pA(B) = p(B|A) = p(A ∩ B)/p(A). Bayes’ rule
follows from this definition. Quantum theory defines a conditional state, wA, as follows: If
event A is observed then wA = PAw/√p(A), so that p(B|A) = ||PBPAw||

2/p(A).
According to classical theory, if A, B are two events in Ω, then we can always define

the intersection event A ∩ B = B ∩ A, and p(A ∩ B) = p(A)p(B|A) = p(B)p(A|B) =
p(B ∩ A), so the order of events does not matter. According to quantum theory, if A, B
are two events in V, then we can define the sequence of events A and then B, denoted
(A, B); and p(A, B) = p(A)p(B|A) = ||PBPA w||2 and the order of the events can matter.
The intersection event, A ∩ B = B ∩ A, only exists in quantum theory if PBPA = PAPB,
that is, the projectors commute, and in such cases, there is not any order effects (see Grif-
fiths, 2003, p. 53; Niestegge, 2008, pp. 247). Commutativity is a key point where the two
theories diverge.

Classical probability theory can be dynamically extended to sequences of events across
time by a Markov process that evolves according to a transition operator derived from
the Kolmogorov forward equation. Quantum theory can be extended to sequences of
events across time by a quantum process that evolves according to a unitary operator
derived from the Schr€odinger equation.

A.2. An example of using quantum probability theory to model cognitive processes

The above summary is abstract and general. Next, a simple and concrete example is
provided to illustrate how a quantum cognitive model can be developed to explain para-
doxical empirical findings in psychological literature.

Classical probability theory assumes that events are as subsets of a sample space. This
implies that the probability of an event A can never be less than the probability of the
conjunction of A with another event: p(A) ≥ p(A ∩ B). However, violations were discov-
ered (e.g., Tversky & Kahneman, 1973, 1983). Consider the famous Linda problem
(Tversky & Kahneman, 1983). Participants were shown short stories describing a hypo-
thetical person, Linda, who was described much like a feminist. Then, they were asked to
evaluate the relative probability of statements about Linda. In one statement, Linda was
said to be a bank teller. In another statement, Linda was said to be a bank teller and a
feminist. According to classical probability theory, the second statement is a conjunction
involving the first statement and another property for Linda, so it can never be more
probable than the first. However, empirical data showed that participants considered the
conjunction to be more probable. This violation of classical principles, known as the con-
junction fallacy, has been consistently replicated with experimental variations (Gavanski
& Roskos-Ewoldsen, 1991; Wedell & Moro, 2008). Tversky and Kahneman (1983)
explained their finding using a representativeness heuristic, which bypasses (classical)
probabilities.

Quantum probability theory does not rely on a heuristic explanation, and instead allows
a mathematically principled explanation. According to quantum probability theory, the
conjunction fallacy is a natural consequence of the context- and order-dependence of
probabilistic assessments. Assume that the possible characterizations of Linda as a bank
teller and a feminist represent incompatible events because making a decision regarding
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one introduces thoughts about the other. Incompatible events can be represented as sub-
spaces at oblique angles, as shown in Fig. 1. For simplicity in the illustration, we repre-
sent the story information in a two-dimensional space, with the possibilities of bank teller
and feminist corresponding to one-dimensional subspaces (i.e., rays). The event that
Linda is not a bank teller is represented by a ray orthogonal to the ray representing the
event that Linda is a bank teller. Also, the feminist ray is approximately at 45 degrees
relative to the bank teller ray. (Note this angle could be varied by rotating the feminist
ray further away from or closer to the bank teller ray, but we leave the angle at 45
degrees for simplicity in this illustration). This means that if a person is a feminist, there
is an equal chance of her being a bank teller and not being a bank teller. Also note that,
using this representation, we cannot concurrently assess the conjunction that Linda is a
bank teller and a feminist: If we are certain she is a feminist, then the state vector is
aligned with the feminist ray, which implies uncertainty regarding the bank teller ques-
tion, and vice versa. Thus, the evaluation of two incompatible properties in quantum the-
ory has to be a sequential operation. Busemeyer et al. (2011) proposed that the
evaluation of A and then B corresponds to a sequential projection from an initial belief
state w to the A subspace first and then to the B subspace. That is, p(A and then B) =
|PBPA w|2. This is analogous to the classical definition of conjunction:
pðBjAÞ � pðAÞ ¼ jPBPAwj2

jPAwj2 jPAwj2 ¼ jPBPAwj2, expect that here the order of operations is
critical.

Next, we need to consider where to place the initial belief state vector, w. The initial
background information on Linda provided by Tversky and Kahneman (1983) suggests

Fig. 1. An illustration of a quantum model of the conjunction fallacy.
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that she is unlikely to be a bank teller (thus, the state vector is reasonably far from the
bank teller ray) and likely to be a feminist (thus, the state vector is near the feminist ray).
Finally, for conjunctive statements, we assume that the more plausible outcomes are eval-
uated first (except when there are strong constraints from the syntactic on the order of the
premises). Thus, assessing the conjunction that Linda is a feminist and a bank teller
involves projecting onto the feminist ray and then projecting onto the bank teller ray; the
squared length of the final projection (the green line in Fig. 1) is the probability of this
conjunction. In contrast, projecting straight onto the bank teller ray is associated with a
projection of smaller length (the aqua line in Fig. 1). Hence, the quantum model correctly
predicts that the probability that Linda is a bank teller is smaller than the conjunction.

The quantum model provides an “availability” type of intuitive interpretation for the
empirical results of Tversky and Kahneman (1983): Immediately, after participants read
the Linda story, it is nearly impossible to think that Linda can be a bank teller. However,
once participants have accepted the highly likely event that Linda is a feminist, then from
this feminist point of view, it becomes a bit more likely that Linda is also a bank teller.
In a way, accepting Linda as a feminist abstracts away some of the initial information
about Linda, but it makes other information available, notably information about various
professions that feminists can have. Perhaps being a bank teller is not the most likely pro-
fession for a feminist, but it is not entirely unlikely either. It is important to note that a
simple formalization along the above lines can explain not only the conjunction fallacy
but also a range of other probability judgment “errors” found in literature, including the
disjunction fallacy (Busemeyer et al., 2011). The Linda example shows how a finding
which seems paradoxical in classical theory becomes intuitive in quantum theory. The
quantum explanation is mathematically principled and does not rely on tool boxes of
heuristics. See Busemeyer et al. (2011) and Busemeyer and Bruza (2012) for more
detailed model description and testing.
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