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Abstract

Question order effects are commonly observed in self-report measures of judgment and attitude.

This article develops a quantum question order model (the QQ model) to account for four types

of question order effects observed in literature. First, the postulates of the QQ model are pre-

sented. Second, an a priori, parameter-free, and precise prediction, called the QQ equality, is

derived from these mathematical principles, and six empirical data sets are used to test the predic-

tion. Third, a new index is derived from the model to measure similarity between questions.

Fourth, we show that in contrast to the QQ model, Bayesian and Markov models do not generally

satisfy the QQ equality and thus cannot account for the reported empirical data that support this

equality. Finally, we describe the conditions under which order effects are predicted to occur, and

we review a broader range of findings that are encompassed by these very same quantum princi-

ples. We conclude that quantum probability theory, initially invented to explain order effects on

measurements in physics, appears to be a powerful natural explanation for order effects of self-

report measures in social and behavioral sciences, too.

Keywords: Order effects; Question order; Judgment; Quantum probability; Bayesian; Markov;

Constructive; Vector feature space

1. Introduction

Early in the 20th century, physicists developed quantum mechanics to explain phenom-

ena that seemed paradoxical according to classical Newtonian theory. In the process, they

also discovered an entirely new theory of probability (Suppes, 1961). One of the para-

doxes explained by quantum theory was the finding that the order of measurements

affected the final observed probabilities. In the terminology of quantum physics, some
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observables were found to be non-commutative. Consequently, as the mathematical foun-

dation for quantum mechanics, quantum probability theory was founded on a non-com-

mutative algebra (Von Neumann, 1932). This is one of the fundamental differences from

the classical probability theory (the mathematical foundation for statistical mechanics in

classical Newtonian theory).

Order effects of measurements are not unique to physics. The order in which questions

are asked has long been shown to influence human judgments in social and behavioral

research (e.g., Sudman & Bradburn, 1974; Schuman & Presser, 1981; Tourangeau, Rips,

& Rasinski, 2000). A natural inquiry is given in the following: Can quantum probability

theory be usefully applied to predict human judgments and self-report measurements in

social and behavioral sciences? In fact, Niels Bohr (1958), who received the Nobel Prize

in 1922 for his contributions to understanding atomic structure and quantum mechanics,

often speculated that ideas from quantum theory have applications outside of physics.1

A skeptic would argue that it is quite a speculative leap to think that quantum proba-

bility theory can be applied to human judgments simply because human judgments dis-

play order effects. Indeed, to rigorously test the idea, we need to derive a quantitative

prediction about order effects from quantum probability theory that can be empirically

tested on human judgments and can be used to differentiate the quantum versus classical

theories. This is exactly the purpose of this article. First, the postulates of the quantum

question order model (the QQ model) are presented. Second, an a priori, parameter-free,

and precise prediction, called the QQ equality, is derived from these mathematical princi-

ples, and six empirical data sets are used to test the prediction. Third, a new index is

derived from the model to measure similarity between questions. Fourth, we show that in

contrast to the QQ model, Bayesian and Markov models do not generally satisfy the QQ

equality and thus cannot account for the reported empirical data which support this equal-

ity. Finally, we describe the conditions under which order effects are predicted to occur.

Also, we review a broader range of findings that are encompassed by these very same

quantum principles. We conclude that quantum probability theory, initially invented to

explain order effects on measurements in physics, appears to be a powerful natural expla-

nation for order effects of self-report measures in social and behavioral sciences, too.

2. Quantum probability theory applied to human judgments

Quantum probability theory is defined by a set of axioms for probabilities proposed by

Von Neumann (1932). It is a generalization of classical probability theory, which is

defined by a different set of axioms proposed by Kolmogorov (1933). Both classical and

quantum probability theories are designed to assign probabilities to possible events in the

world. The key difference between them lies in the mathematical nature of the definition

of an event. Classical (Kolmogorov) theory defines events as subsets of a sample space;

in contrast, quantum (Von Neumann) theory defines events as subspaces of a vector

space. Events defined by subsets are commutative (i.e., order independent), whereas

events defined by subspaces are non-commutative (i.e., order dependent). It is the
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order-dependent nature of events that makes quantum theory an attractive way to repre-

sent human judgments. The social and behavioral sciences have been largely committed

to the classical probability theory. While it is true that quantum probability has rarely

been applied outside of physics, a growing number of researchers are exploring its useful-

ness for explaining human judgments. See the introduction to this special issue for an

overview of quantum theory applied to cognition.2

2.1. Application to question order effects

Before introducing the QQ model, it will be helpful to have a concrete example in

mind. One of the four examples presented in a review of question order effects by Moore

(2002) concerned public opinions on characters of Bill Clinton and Al Gore. In a Gallup

poll conducted during September 6–7, 1997, half of the 1,002 respondents were asked the

following pair of questions: “Do you generally think Bill Clinton is honest and trustwor-

thy?” and subsequently, the same question about Al Gore. The other half of respondents

answered exactly the same questions but in the opposite order. Question order effects are

traditionally measured by comparing the agreement rates to each object obtained in a

non-comparative versus a comparative context (see Moore, 2002, for the origin of these

definitions). The non-comparative context refers to when an object is asked first, at which

point there is no specific comparison object; the comparative context refers to when an

object is asked second, allowing a comparison with the first object. The results of the poll

exhibited a striking order effect. In the non-comparative context, Clinton received a 50%

agreement rate and Gore received 68%, which shows a large gap of 18%. However, in

the comparative context, the agreement rate for Clinton increased to 57% while for Gore,

it decreased to 60%—that is, the gap decreased to 3%. Moore (2002) defines this as a

consistency effect: The difference between the objects becomes smaller in the compara-

tive context than in the non-comparative context.

Now, we will introduce the four basic postulates of the QQ model. These four postu-

lates are mathematically the same as the general principles of quantum theory except that

the events in this application are humans’ answers to attitude questions. Quantum theory

provides a geometric approach to probability theory, and so the four postulates are illus-

trated in a simple manner using the geometric examples shown in Figs. 1 and 2A, B. The

orthogonal axes in these figures represent different possible (yes, no) answers to ques-

tions, and the vector lying within this space represents a person’s beliefs about these

questions. These figures are described in more detail below, alongside the statement of

each postulate. For simplicity of illustration, the figures are limited to two dimensions;

but please note, the general theory is applicable to all arbitrarily high dimensional spaces

(see the precise and abstract summary in Section 2.2).

Postulate 1: A person’s belief about an object in question is represented by a state
vector in a multidimensional feature space (technically, an N-dimensional Hilbert space).
In general, each dimension (technically, a basis vector) corresponds to a feature pattern,

that is, a combination of properties that the person may or may not believe about the

object. This use of feature vectors to represent belief or knowledge is consistent with

Z. Wang, J. R. Busemeyer / Topics in Cognitive Sciences (2013) 3



many other cognitive models of memory (e.g., Hintzman, 1988; Shiffrin & Steyvers,

1997). In our example in Fig. 1, the feature space is limited to two orthogonal dimen-

sions for simplicity (representing either a “yes” or “no” answer to a question), and the

initial belief state vector is represented by the symbol S (i.e., the purple line in Fig. 1). In

addition, the belief vector is assumed to have unit length, ||S|| = 1, which means the

squared length of the vector (i.e., sum of squared magnitudes of vector elements) equals

unity. As discussed later, this is important to guarantee that the probabilities computed

from the model for all possible answers to a question sum up to one.

It is important to note that the initial belief state S represents a very general state.

Although it is represented by a single vector, it can be assigned coordinates with respect

to different sets of basis vectors in the multidimensional feature space. In our example

here in Fig. 1, the belief vector S, on one hand, can be described in terms of the Clinton

basis (i.e., Cy–Cn basis vectors, black lines in Fig. 1). Then, S represents the respondent’s

belief concerning “whether Clinton is honest and trustworthy” and its two coordinates are

(.8367, .5477). On the other hand, S can be described using the Gore basis (i.e., Gy–Gn
basis vectors, blue lines in Fig. 1). Then, it represents the respondent’s belief about

“whether Gore is honest and trustworthy” and its two coordinates are (.9789, �.2043).

The empirical meanings of these coordinates are explained next.

Postulate 2: A potential response to a question is represented by a subspace of the
multidimensional feature space. A subspace is spanned by a subset of the basis vectors in

the multidimensional feature space, which represent feature patterns describing the ques-

tion at hand. In our example, the question is “Is Clinton honest and trustworthy” and one

potential answer is “yes.” For our simple illustration in Fig. 1, the subspace for each

Fig. 1. A two-dimensional example of the quantum model of question order effects.
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answer is one-dimensional, which is called a ray. As shown in Fig. 1, the ray labeled Cy
represents responding “yes” to the Clinton question, and the ray Cn represents responding

“no” to the Clinton question; similarly, Gy and Gn, respectively, represent rays of

answering “yes” and “no” to the Gore question. Note that the two rays for Clinton are

(A)

(B)

Fig. 2. (A) The probability for answering “yes” to the Gore question after having answered “yes” to the

Clinton question. (B) The probability for answering “yes” to the Clinton question after having answered

“yes” to the Gore question.
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orthogonal, as are the two rays for Gore. This is because the two responses—“yes” and

“no”—are mutually exclusive and the probability of their conjunction should be 0. With

the same reasoning, each of the Clinton rays is at an oblique (i.e., non-orthogonal) angle

with respect to each of the Gore rays. This represents the fact that answering one ques-

tion does not lead to a certain answer to the other question. In general, subspaces are not

limited to rays. For example, a question could be represented by a plane spanned by two

orthogonal basis vectors, and in this case the question is represented by the disjunction of

the two properties associated with the two vectors.

In our model, responding to a question is theorized as projecting the belief state vector

S down onto the subspace representing the response to that question. This is analogous to

fitting the belief state to the features of the question response using multiple regression.

The cognitive operation that performs this orthogonal projection is called the projector
(technically, a Hermitian and idempotent linear operator). In our Fig. 1, the symbol PC

represents the projector for the “yes” answer to Clinton, which in our simple example is a

2 9 2 diagonal matrix PC = diag[1 0] (when expressed in terms of the Clinton coordi-

nates). Likewise, the symbol PG represents the projector for the “yes” answer to Gore,

which in our simple example is another 2 9 2 matrix denoted PG. The projector for

answering “no” to Clinton is P~C, which equals (I�PC) because as explained, rays Cn and

Cy are mutually exclusive (and the identity matrix I can be viewed as the projector for the

entire multidimensional feature space). Similarly, the projector for “no” to Gore is P~G,

which equals (I�PG).

Postulate 3: The probability of responding to an opinion question equals the squared
length of the projection of the state vector onto the response subspace. As mentioned, we

can view the projection as the result produced by fitting the belief to the features of the

question using multiple regression. Following this analogy, the squared length of the pro-

jection is similar to the proportion of the belief fit by the question response features (i.e.,

the R2 obtained from a multiple regression fit). The projection of the belief S onto the Cy
subspace is its projector PC multiplied by S, that is, PC�S. Based on quantum probability

theory, the squared length of this projection, ||PC�S||2, is the probability of responding

“yes” to the Clinton question. Similarly, the probability of responding “yes” to the Gore

question is ||PG�S||2. The probability of saying “no” to Clinton equals ||P~C�S||2 =
||(I�PC)�S||2 = 1�||PC�S||2; the probability of answering “no” to Gore is 1�||PG�S||2. These
comprise the probabilities for the Clinton and Gore questions obtained under the non-com-
parative context. In our Fig. 1 example, we know that S is represented by (0.8367,

0.5477) in the Clinton coordinates, and PC picks the Cy coordinate of S. Hence, p(Cy) =
||PC�S||2 = |.8367|2 = .70. Likewise, we know that S is represented by (.9789, �.2043) in

the Gore coordinates. Hence, p(Gy) = ||PG�S||2 = |.9789|2 = .96. Apparently in this exam-

ple, when asked in a non-comparative context, Gore was favored more than Clinton.

Postulate 4: The updated belief state after deciding an answer to a question equals the
normalized projection on the subspace representing the answer. This postulate concerns

the change in the belief state after answering an opinion question, and it is critical in gen-

erating order effects. It is consistent with research on measurement effects on belief, atti-

tude, intention, and behavior (Chandon, Morwitz, & Reinartz, 2005; Feldman & Lynch,
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1988). This line of research has shown that survey measurement itself can change the

measured evaluation and cognition. In our example, suppose the Clinton question is asked

first and a respondent answers “yes,” that is, the initial belief S is being projected onto

the Cy subspace. The person’s belief becomes the projection—technically, the normalized

projection. Recall that PC�S is the projection, but this projection usually has a length less

than one and, thus, it needs to be normalized (i.e., divided by the length of the projec-

tion): SC = (PC�S)/||PC�S||. This normalization maintains the unit length of the projection.

In other words, it keeps the sum of the probabilities of all potential responses equal to

one—just like the normalization used to define a conditional probability in classical prob-

ability theory. If instead, the person answers “no” to the Clinton question, then the belief

becomes S~C = (P~C�S)/||P~C�S||. This new revised state, SC or S~C, represents the change

in the belief induced by expressing an opinion on Clinton and incorporates updated infor-

mation consistent with the expressed opinion.

Implications of postulates for question order effects. The subsequent question must be

evaluated based upon the updated belief, which has been changed by the answer to the

preceding question. After updating the belief state, the process to compute probabilities

of opinion responses to the next question is exactly as outlined above in the non-compar-

ative context. For example, given that the person already said “yes” to the Clinton ques-

tion and, thus, the belief has been updated to SC, the conditional probability of saying

“yes” to the Gore question equals ||PG�SC||2 (see Fig. 2A). In the same way, the condi-

tional probability of saying “yes” to the Clinton question, given that the person already

said “yes” to the Gore question, equals ||PC�SG||2 (see Fig. 2B).

In Fig. 2A–B, both conditional probabilities (squared length of PG�SC in Fig. 2A and of

PC�SG in Fig. 2B) equal .50. This is easy to tell from the figures because the Cy and Gy
rays share an angle of 45o. Now, we can calculate all the probabilities needed for the sec-

ond question that arise in the comparative context. Consider the total probability of saying

“yes” to Clinton after answering the Gore question, which we denote as TPC. This equals

the probability of saying “yes” to Gore and then “yes” to Clinton, denoted p(GyCy), plus
the probability of saying “no” to Gore and then “yes” to Clinton, denoted p(GnCy).
According to the QQ model, p(GyCy) = ||PG�S||2�||PC�SG||2 and p(GnCy) = ||P~G�S||2�
||PC�S~G||2. Thus, using our example, TPC = p(GyCy) + p(GnCy) = (.96)(.50) + (.04)

(.50) = .50. Following the same way, the total probability of saying “yes” to the Gore

question after answering the Clinton question is: TPG = p(CyGy) + p(CnGy) = ||PC�S||2�
||PG�SC||2 + ||P~C�S||2�||PG�S~C||2 = (.70)(.50) + (.30)(.50) = .50. Therefore, the difference

in agreement rate between Clinton and Gore disappears in the comparative context.

As the simplified two-dimensional model shown, there is a large difference between

the agreement rates to the two politicians in the non-comparative context, .70 for Clinton

and .96 for Gore; however, there is no difference in the comparative context, .50 for both.

As we intentionally designed, this example reproduces the pattern of the consistency

effect as reported by Moore (2002). Observing the effect represented in Fig. 1, it is easy

to tell that the consistency order effect is a result of the geometry of the feature space—
particularly, the positions of the initial belief state and the two “yes” response subspaces.

First, the initial belief state S starts out closer to the subspace for saying “yes” to Gore
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than to Clinton. This represents the initial favoring of Gore in the non-comparative con-

text. However, in the comparative context, the updated belief state is equally distant from

these two rays, which causes the agreement rates to equalize in the comparative context

(see SC in Fig. 2A and SG in 2B).

2.2. A summary of the QQ model

The QQ model now can be summarized as follows. A person’s belief about an

object is represented by a state vector, denoted S, in an N-dimensional Hilbert space.

Each potential response x to a single question Q corresponds to a subspace, Qx, that
has a unique orthogonal projector PQx. If responses x, y are mutually exclusive, then

PQx�PQy = 0. The projectors to all responses to a question sum to the identity

∑xPQx = I. The probability of responding to a question equals the squared length of

this projection, ||PQx�S||2, and the updated belief state after deciding on an answer to

this question equals the normalized projection SQx = (PQx�S)/||PQx�S||. On the basis of

these assumptions, the probability of responding x to question A and then y to question

B equals p(AxBy) = ||PAx�S||2�||PBy�SAx||2 = ||PBy�PAx�S||2.

3. Quantum analysis of question order effects

As mentioned, the QQ model is not limited to a two-dimensional feature space. Here-

after, we do not assume a two-dimensional space. Instead, the following developments

allow for an arbitrary N-dimensional space. An order effect for the Clinton question (CC)

occurs when the probability of answering “yes” to Clinton in the comparative context,

given by TPC = p(GyCy) + p(GnCy) = ||PC�S||2�||PG�SC||2 + ||P~G�S||2�||PC�S~G||2 differs

from that in the non-comparative context, given by p(Cy) = ||PC �S||2. This difference is

called an interference effect, which is defined in quantum theory as a violation of the law
of total probability obeyed by the classical probability theory. This difference can be

expressed as follows (see the Appendix for proof):

CC ¼ TPC � pðCyÞ ¼ 2 � pðGyCyÞ � 2 � h � ppðCyÞ � ppðGyÞ: ð1aÞ

Similarly, the order effect for the Gore question (CG) equals:

CG ¼ TPG � pðGyÞ ¼ 2 � pðCyGyÞ � 2 � h � ppðGyÞ � ppðCyÞ ð1bÞ

Observing the equations and using Eq. 1a as an example, we can see that on the right-

hand side of the equation, the first part, p(GyCy), actually is the probability of answering

“yes” to both questions in the Gore–Clinton sequence in the comparative context. The

second part, h�√p(Cy)�√p(Gy), is the product of three components in the non-comparative

context: The magnitude of the projection onto the Cy subspaces (i.e., square root of the

probability of saying “yes” to Clinton), and the magnitude of the projection onto the Gy
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subspace (i.e., square root of the probability of saying “yes” to Gore), as well as an index

h representing the correlation between these two projections. Technically, h =
Re[〈SC | SG〉], that is, the real part of the inner product between the two normalized pro-

jections. For example, in Fig. 1, we find that h = √.5 = .7071, which is exactly the cosine

between the Cy ray and the Gy ray, and reflects the 45°C angle between these two rays.

This index h merits some explanation. It is a theoretically appealing new measure

derived from the QQ model. Being analogous to correlation measures, such as Pearson’s

r, it is a measure of the similarity between the two “yes” projections. If the two projec-

tions are similar, then h is positive; if they are dissimilar, then h is negative; and h = 0

indicates that there is no relationship between the two “yes” projections (i.e., they are

orthogonal). We can solve for h in either Eqs. 1a or 1b to obtain

h ¼ :5 � CC þ pðGyCyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðCyÞpðGyÞp ¼ :5 � CG þ pðCyGyÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðCyÞpðGyÞp ð2Þ

As shown, all the terms needed to compute h are observable. They are often obtained

in split-ballot sample surveys or experiments on questions orders. They can be computed

from frequency data of the eight response sequences, such as “yes” to Clinton and then

“yes” to Gore, and “yes” to Clinton and then “no” to Clinton, and so on. Therefore, using

Eq. 2, researchers can easily estimate the similarity index h based upon their own empiri-

cal data. In our example, when we estimate h using the survey data from Moore (2002),

it is .8397 and .8421 based on the two ways of calculation in Eq. 2. As expected, they

are almost identical. Their average is hCG = .8409, which, as expected, is positive. This

large positive h reflects and quantifies the general belief that Clinton and Gore are highly

similar in their features, which is the explanation provided by Moore (2002) for the con-

sistency effect.

4. An a priori, parameter-free, and precise test of the QQ model

Now, we return to one of our primary questions. Does the QQ model predict some-

thing new, interesting, and quantitative (i.e., in exact amount) on question order effects?

Suppose we have two questions, A and B. According to quantum theory, the state vector

has a normalized projection on the subspace for “yes” to question A (denoted by the col-

umn vector SA), and the same state vector has a normalized projection on the subspace

for “yes” to question B (denoted by the column vector SB). According to quantum theory,

the probability of transiting from SA to SB must equal the probability of transiting in the

opposite direction (Peres, 1998). This equality follows from the property of inner

products |〈SB | SA〉|
2 = |〈SA | SB〉|

2, where 〈SA | SB〉 is the inner product between the two

vectors. This equality is called the law of reciprocity in quantum theory (Peres, 1998).

Note that this symmetry property is a challenging prediction to make in the social and

behavioral sciences for the following reason. In theories based on classical probability, if

A and B are any two events, we generally expect that p(A|B) is not the same as p(B|A)
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(except under very unusual circumstances). However, in quantum theory, the law of reci-

procity requires that if events A, B are each represented by a single dimension (i.e., a

ray), such as the projections SA and SB, then p(A|B) must be exactly the same as p(B|A).3

Because the QQ model is strictly derived from general quantum principles, it must follow

the law of reciprocity and make this challenging prediction. It is the first attempt to test

whether this law works for human behavior.

Specifically in the QQ model, the law of reciprocity implies that the index h in Eqs.

1a and 1b must be the same for both order effects. This is because it is based on the real

part of the inner product between the projections of the belief state onto the answers for

each question, and the real part of the inner product is independent of the order in which

the questions are asked, Real[〈SB | SA〉] = Real[〈SA | SB〉]. (In general, the inner product is

a complex number with real and imaginary parts.) Therefore, the exact same h can be

used to determine both of the Clinton and Gore order effects, or more generally, the A
and B question order effects as defined by Eqs. 1a and 1b. This fact leads to a critical test

for the QQ model called the QQ equality (see the Appendix for proof). In addition, the

QQ equality depends on a critical assumption: The derivation is valid as long as the only
factor that changes the context or the state for answering a question is answering its pre-

ceding question.

In the Appendix, it is proven that the QQ model must make the following prediction

regarding the sequence of probabilities obtained from an ordered presentation of ques-

tions. Suppose two questions, A and B, can be answered with “yes” or “no” (or “agree”

or “disagree,” “accept” or “reject,” and the like). The questions can be presented in the

AB order for one group of respondents and in the BA order for a second group. Define

p(AyBn) as the probability of saying “yes” to A and then “no” to B in the AB order,

define p(BnAy) as the probability of saying “no” to B and then “yes” to A in the BA
order, and so forth. In general, the model allows for order effects, such as p(AyBn) 6¼
p(BnAy). However, it must always predict that the probability of changing answers

between the two questions (i.e., one question has a “yes” answer and the other question

has a “no” answer) must be equal to each other in the two question orders. That is, the

QQ model precisely and always predicts the following QQ equality:

pðAyBnÞ þ pðAnByÞ ¼ pðByAnÞ þ pðBnAyÞ: ðQQ EqualityÞ

This prediction of QQ equality can be tested as follows. Define pAB = p(AyBn) +
p(AnBy) as the probability of having different answers to the two questions in the AB
order, and pBA = p(ByAn) + p(BnAy) as the probability of having different answers to the

two questions in the BA order. Then, the model must always predict that the following

q-test value equals zero:

q ¼ pAB � pBA ¼ 0: ðq-testÞ

This parameter-free and quantitative test of the QQ model holds for arbitrarily high-

dimensional spaces and any pair of projectors.
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There are two ways to statistically test this prediction using sample data rather than

population probabilities. The first way is to use a Z-test to directly test whether q, as
defined above, significantly differs from 0. We can use the observed frequencies of each

response sequence (e.g., n(AyBn) and n(AnBy)) from the data to directly compute the test

statistic q. Then, we can employ the standard test for a difference between proportions

for two independent groups to test the quantum model prediction. If the model is correct,

then for large sample sizes (NAB for the AB order and NBA for the BA order), the esti-

mated q statistic will be approximately normally distributed with a mean equal to zero

and population variance r2 = 2�p�(1�p)/N, where p = pAB = pBA (assuming the null

hypothesis is true) and N ¼ ðN �1
AB þ N �1

BA Þ�1
is the total number of observations. The

deviation from the prediction (i.e., sample q value) is statistically significant if the Z-sta-
tistic exceeds the critical value of 1.96 (at a = .05).

The second way is to compare (a) a binomial model of the four frequencies contained

in the two-by-two table for each order condition with the constraint pAB = pBA to (b) the

same binomial model without this constraint using a v2 statistic. First, we can obtain

maximum likelihood estimates of the probabilities for each response sequence based on

the observed frequencies, under the constraint pAB = pBA of the quantum model, and then

without this constraint for the unconstrained model. The two models differ by one degree

of freedom. Second, after obtaining maximum likelihood estimates of the response proba-

bilities, we can compute a one degree of freedom v2 statistic, which equals 2�[log likeli-

hood of unconstrained model�log likelihood of constrained model] (see Bishop,

Fienberg, & Holland, 1975). The deviation from the quantum model prediction is statisti-

cally significant if the v2 statistic exceeds the critical value of 3.84 (at a = .05).

The first way of testing the model provides a stronger test because it does not involve

fitting all the predicted probabilities to all the observed sample proportions. Instead, it pro-

vides an a priori test of the QQ model prediction of the null hypothesis q = pAB�pBA = 0,

which is directly tested using the sample estimated proportions. This test is parameter-free

and precise. Such a strong test on theoretical models is rare in social and behavioral sci-

ences. The second method requires fitting all the theoretical response probabilities, which

makes it a post hoc test. However, this test is still useful if the q-test is violated. It allows
us to examine whether there still remains a significant departure from the QQ model when

we fit all of the theoretical probabilities to the data. This is a common approach to testing

models in social and behavioral sciences. It is possible for the q-test to reject the model

but the v2 test retains the model, because the model could still provide an adequate fit

when allowed to fit the probabilities to the data. If the v2 test is also rejected, then this

means the model cannot even be fitted to the data adequately.

5. Testing the QQ model using four types of order effects

Below, we present the test of the QQ model using six data sets (see Table 1). Four

were reported by Moore (2002), who reviewed four different types of question order

effects found in literature—consistency, contrast, additive, and subtractive. These data
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sets used split-ballot samples in Gallup national surveys. The other two were from our

laboratory experiments. Interestingly, one of the six data sets (the “subtractive” data set

reviewed by Moore) is predicted by the QQ model to fail the q-test.
In Table 1, each column presents a data set. The rows are organized in three groups.

The first group includes the first 10 rows. The row labeled NAB indicates the sample size

for the group answering the questions A and B in the AB order; the next four rows pres-

ent the probabilities of four response sequences to the two questions. Similarly, the row

labeled NBA shows the sample size for the group answering the questions in the BA order,

and the next four rows present the probabilities of response sequences. Following these,

the next seven rows compose the second group. Based on the probability data from the

first group of rows, we can easily compute the probability of answering “yes” to A in the

Table 1

Testing the quantum model using four types of question order effects and two laboratory experiments

Statistic

Four Types of Question Order Effects Reviewed by Moore

(2002) Lab Experiments

Consistency Contrast Additive Subtractive Racial Hostility AA Support

Clint–Gore Gingrich–Dole White–Black
Rose

–Jackson
R–J

(model) White–Black Race–Gender

NAB 447 (509)* 437 (533) 459 (491) 506 (566) 116 (116) 118 (118)

p(AyBy) .4899 .3936 .3987 .3379 .3751 .2500 .4831

p(AyBn) .0447 .0824 .0174 .3241 .2556 .0603 .0424

p(AnBy) .1767 .3204 .1612 .0178 .0140 .2931 .1610

p(AnBn) .2886 .2037 .4227 .3202 .3553 .3966 .3136

NBA 432 (494) 377 (483) 486 (514) 462 (494) 108 (108) 106 (106)

p(ByAy) .5625 .3448 .4012 .4156 .3749 .3241 .5660

p(ByAn) .1991 .3422 .0597 .0671 .0950 .0648 .1321

p(BnAy) .0255 .0637 .1379 .1234 .1746 .2130 .0283

p(BnAn) .2130 .2493 .4012 .3939 .3554 .3981 .2736

P(Ay) .5347 .4760 .4161 .6621 .6307 .3103 .5254

TP(Ay) .5880 .4085 .5391 .5390 .5496 .5370 .5943

P(By) .7616 .6870 .4609 .4827 .4699 .3889 .6981

TP(By) .6667 .7140 .5599 .3557 .3891 .5431 .6441

CA .0533 �.0675 .1230 �.1231 �.0811 .2267 .0689

CB �.0949 .0270 .0990 �.1270 �.0808 .1542 �.0540

h .8409 .6634 .7866 .7771 .4155 .5521 .8600

q �.0031 �.0031 �.0189 .1514 0 .0757 .0430

z �.1090 �.0896 �.7419 5.3026 1.2162 .8312

v2 .0119 .008 .5511 28.57** 1.4842 .6945

Notes. *The sample size in parentheses includes all respondents, and the sample size before the parentheses

only includes respondents who provided a “yes” or “no” answer. The test statistics are based upon the latter.

**The constrained maximum likelihood estimates, which produced a significant v2 difference test statistic,

28.57, when compared to the unconstrained model (i.e., the observed Rose–Jackson data in the column

labeled “Subtractive”).
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non-comparative context, p(Ay) = p(AyBy) + p(AyBn), and in the comparative context,

TP(Ay) = p(ByAy) + p(BnAy). Based on the definition of the order effect in Eq. 1a, we

have CA = TP(Ay)�p(Ay). Similarly, we can compute p(By), TP(By), and CB. Also, the

index h can be computed using Eq. 2. Finally, the last group of rows (the remaining three

rows) in the table shows the model test statistics using the first method (q and z scores)

and the second method (v2) described in the previous section.

The first data set in Table 1, labeled “Consistency,” refers to the “Do you generally think

Bill Clinton/Al Gore is honest and trustworthy?” questions as discussed throughout the arti-

cle. As shown, the prediction of the QQ model is surprisingly accurate: The predicted dif-

ference by the q-test is 0 and the observed difference in the survey data is only �.0031,

which obviously are not statistically different. The v2 statistic is not significant either.
The second data set refers to the questions “Do you think Newt Gingrich/Bob Dole is

honest and trustworthy?” collected during March 27–29, 1995. These data are presented

in the column labeled “Contrast” in Table 1. In this case, within the non-comparative

context, there was an initial difference favoring Dole; but within the comparative context,

the difference became more exaggerated. In other words, the order effect was positive for

Dole and negative for Gingrich. Once again, the prediction of the QQ model is extremely

accurate. The prediction error, q = �.0031, is not significantly different from 0; and the

v2 statistic is not significant either.

The third data set, showing an “Additive” effect, refers to the pair of questions on per-

ceptions of racial hostility in the Aggregate of Racial Hostility Poll during June 27–30,
1996. In the poll, respondents were asked, “Do you think that only a few white people

dislike blacks, many white people dislike blacks, or almost all white people dislike

blacks?” preceding or following the same question asked about black hostility toward

white. For both questions, the percent responding “all” or “many” increased from the

non-comparative context to the comparative context—hence, it is called the “additive”

order effect. The prediction of the QQ model is accurate again: Neither the prediction

error q nor the v2 test is significant.
The fourth data set refers to the pair of question about baseball players Pete Rose and

Shoeless Joe Jackson: “Do you think Rose/Jackson should or should not be eligible for

admission to the Hall of Fame?” (July 13–14, 1999). These data are presented in the col-

umn labeled “Subtractive.” The survey shows that the favorable rate for both baseball

players decreased in the comparative context. Interestingly, the QQ model is predicted
not to fit this data set because this case violates an important assumption of the model.

Recall that our prediction for the current QQ model was based on the assumption that

only the question order influences the question context. This assumption is violated in this

Rose/Jackson data set. Respondents lacked sufficient knowledge about the baseball play-

ers in the questions, and it was necessary to provide some background information prior

to each question. Indeed, the survey provided the following background information pre-

ceding the Pete Rose question: “As you may know, former Major League player Pete

Rose is ineligible for baseball’s Hall of Fame due to charges that he had gambled on

baseball games…” A little more information was provided for Joe Jackson preceding the

question on him: “As you may know, Shoeless Joe Jackson is ineligible for baseball’s
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Hall of Fame due to charges that he took money from gamblers in exchange for fixing

the 1919 World Series…” Thus, the initial belief state when Rose/Jackson was asked first

was affected by the information provided about the particular player. Furthermore, the

context for the second question was changed not only by answering the first question but

also sequentially by the additional background information on the player in the second

question. Therefore, for this data set, the QQ model predicts that the index h for the

Rose-then-Jackson order and Jackson-then-Rose order would be different. From the per-

spective of the QQ model, actually the two orders in the data set were Rose background-

Rose question-Jackson background-Jackson question versus Jackson background-Jackson

question-Rose background-Rose question. (A more complicated version of the QQ model

can be developed to account for this data set by incorporating effects of new information

in between questions.)

As seen in Table 1, the Rose/Jackson data indeed show that the prediction error is

highly statistically significant using both the q-test and the v2 method. Thus, the QQ

model, as predicted, does not accurately account for the Rose/Jackson data set. Note,

however, that the constrained maximum likelihood estimates do reproduce the subtractive

order effect pattern (see Table 1), although the model predicted values differ significantly

from the observed data. In other words, the model, on the one hand, is expected to fail to

account for the exact Rose/Jackson data set; but on the other hand, it can reproduce the

pattern of subtractive effect. The current QQ model is expected to accurately predict sub-

tractive effects as long as only the order of questions influences the question context.

The final two data sets were collected from between-subjects laboratory experiments

by the authors. They are shown in the last two columns of Table 1. One experiment was

designed to replicate the aforementioned white/black racial hostility study. The findings

indeed replicated the additive effect as found by Gallup in 1996, with a larger effect size.

The prediction error, q = .0757, is not significantly different from 0. The v2 statistic is

not significant either.

The other experiment was designed to replicate a survey field experiment conducted

by Wilson, Moore, McKay, and Avery (2008). Participants were asked a pair of ques-

tions: “Do you generally favor or oppose affirmative action (AA) programs for racial

minorities/women?” Both the study by Wilson et al., which used a national representative

sample, and our laboratory experiment, found a consistency effect. Support for the AA

programs for racial minorities and women become more similar in the comparative

context. Specifically, support for racial minorities AA programs increased if the question

followed the question on women, but support for women decreased if asked after racial

minority. As shown by the test statistics in Table 1, the QQ model prediction is highly

accurate again in this case: The prediction error q is not significant; neither is the v2 test.

6. Alternative classical models do not satisfy the q-test

Up to this point, we have shown that the QQ model can account for question order

effects and at the same time satisfies the empirically supported QQ equality. One might
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question whether other popular models of cognition based upon classical probability theory,

such as Bayesian or Markov models, can also account for both question order effects and
the QQ equality. If so, the q-test would not provide diagnostic evidence in favor of the QQ

model. As shown below, these classical models generally predict violation of the QQ equal-

ity and thus fail to account for the reported empirical data which support the QQ equality.

6.1. Bayesian probability models

Bayesian probability models cannot explain question order effects without directly

introducing assumptions about order, because they are based upon the fundamental axiom

of commutativity. According to classical probability theory, the event “yes” to question A
is a set (denoted Ay) contained in the sample space containing all events. Likewise, the

event “yes” to question B is another set (denoted By) contained in the same sample

space. The event defined by the conjunction “yes” to A and “yes” to B is the set intersec-

tion (Ay∩By) = (By∩Ay), which is commutative. These events do not need to be indepen-

dent so that p(By|Ay) 6¼ p(Ay|By), and the prior probabilities need not be equal so that

p(Ay) 6¼ p(By). However, these two probabilities must obey the product rule: p(Ay)�
p(By|Ay) = p(Ay∩By) = p(By∩Ay) = p(By)�p(Ay|By). The only way to produce order

effects is to introduce two new events, denoted O1 = “A was asked before B” and

O2 = “B was asked before A.” This allows one to construct a different sample space con-

ditioned on each order event so that p(Ay∩By|O1) 6¼ p(By∩Ay|O2). However, this formu-

lation only re-describes the experimental findings in a post hoc manner, and it does not

place any constraints on the probability sequences. Therefore, by introducing an ordering

event, a Bayesian model can produce order effects, but then it does not generally predict

the QQ equality to be upheld.

6.2. Markov models

Markov theory provides a classical approach for modeling probabilities of event

sequences (Howard, 1971). Markov models assume that the probability distribution across

states for the next time step only depends on the previous state; however, the state of a

Markov model is designed to contain all of the necessary information about the past. In

other words, the system’s “memory” is encoded into its state representation. In particular,

a Markov model can be designed to incorporate memory of past answers to questions into

its state specification to account for question order effects. However, unlike the QQ

model, the transition probabilities between states, say SA and SB, of a Markov model are

not constrained to satisfy the law of reciprocity, p(SA|SB) 6¼ p(SB|SA). Consequently, Mar-

kov models generally do not predict the QQ equality to be upheld. (Detailed proof is

available upon request.)
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7. Conditions required for producing question order effects

According to the QQ model, a necessary condition for order effects is that the projec-

tors for the answers to the two questions must be non-commuting. This is obvious from

the basic quantum formula for the probability of answers x,y to questions A and then B:
p(AxBy) = ||PByPAx�S||2 If the two projectors commute, PByPAx = PAxPBy, then p(AxBy) =
||PByPAx�S||2 = ||PAxPBy�S||2 = p(ByAx) and there is no order effect. Therefore, the QQ

model predicts order effects only when the two questions are incompatible. We discuss

the issue of compatibility at more length in the general discussion section.

Given that the questions are incompatible, the similarity index h determines the direc-

tion of the order effect. Recall that h measures the similarity between a pair of questions.

It is worth noting that the QQ model makes strong predictions for the similarity parame-

ters when the questionnaire design is expanded to examine three rather than just two

questions. For example, suppose that we have questions A, B, and C. If we use a two-

dimensional model such as shown in Fig. 1, we can estimate the similarity parameter hAB
for a pair of questions A–B, and the similarity parameter hBC for another pair of questions

B–C. Given these two estimates, we can a priori predict the similarity parameter hAC for

the pair of questions A–C, which can be derived from hAB and hBC. This is a strong test

for the capability of the QQ model to predict both directions and magnitudes of order

effects.

Clearly, the order effect is predicted to be a linearly decreasing function of the similar-

ity index h. If the similarity index is small, then a positive order effect is predicted, and

if the similarity index is large, then a negative order effect is predicted. More specifically,

the order effect for question A (CA) depends on the relationship between h and the ratio

a ¼ pðByAyÞp
pðAyÞpðByÞ (we denote this ratio as a for brevity). In the same way, based on Eq. 1b,

we infer that whether the order effect for question B (CB) is positive or negative depends

on whether h is smaller or larger than the ratio b ¼ pðAyByÞp
pðAyÞpðByÞ (we denote this ratio as b

for brevity). Table 2 summarizes how h determines the direction of the order effects CA

Table 2

The similarity measure hAB determines the directions of the order effect for object A and object B, and conse-

quently produces the consistency, contrast, addictive, or subtractive question order effect

Order Effects* CA** CB

Prob of “Yes”

When Non-Comparative

Similarity Between the Two “Yes”

Responses: cos(hAB)***

Consistency + � In favor of B, that is p(Ay) < p(By) a > hAB > b
Contrast � + In favor of B, that is p(Ay) < p(By) a < hAB < b
Additive + + No requirement � or small +, that is, hAB < a, b
Subtractive � � No requirement Large +, that is, hAB > a, b

Notes. *The four types of order effects as defined by Moore (2002). **The order effect for A and B, as
defined in Eqs. 1a and 1b. ***a ¼ pðByAyÞp

pðAyÞpðByÞ and b ¼ pðAyByÞp
pðByÞpðAyÞ, as explained in the text.
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and CB, and further, combining with the response probabilities in non-comparative

context, to produce the four types of order effects as defined by Moore (2002).

8. General conclusions and broader implications

Can quantum probability theory be applied to human judgments and self-report ques-

tions, and importantly, can we provide strong empirical tests of the predictions from the

theory? To answer these questions, we developed a quantum probability model for order

effects on human judgments and attitude questions, called the QQ model. We also pre-

sented an a priori, parameter-free, and precise q-test derived from a fundamental princi-

ple of quantum probability theory called the law of reciprocity. This law imposes a

strong symmetry condition on the nature of order effects. As tested by the q statistic, the

empirical results from six studies provided strong support for the QQ model.

8.1. When are questions incompatible?

According to the QQ model, two questions may be treated as either compatible or

incompatible measurements, and order effects only occur for the latter type. Two ques-

tions are incompatible if the projectors for the questions are not defined by a common

basis. Inability to form a common basis for different questions is expected to occur when

the questions are new or unusual, so that an answer must be constructed online. However,

if a person has a great deal of experience with a combination, then the person may have

sufficient knowledge to form a compatible representation that can answer both questions

using a common basis. (See Schulkin [2008] for further discussions of this type of cogni-

tive adaption with experience.) Therefore, order effects are expected to occur for pairs of

incompatible questions, especially uncommon pairs, which must be (partially) constructed

on the spot to answer them. Our constructionist view of belief, attitude, and intention is

consistent with many others (e.g., Feldman & Lynch, 1988; Schwarz, 2007). From this

view, because of cognitive economy, belief, attitude, and intention are not stored in mem-

ory as properties but instead are constructed while being needed. The retrieved informa-

tion for one question affects the context for the construction process and influences the

subsequent response. Many researchers have investigated the effects of measurements

themselves on measured cognition, such as mere measurement effects, self-generated

validity theory, and reasons theory (Chandon et al., 2005; Dholakia & Morwitz, 2002;

Feldman & Lynch, 1988; Fitzsimons & Morwitz, 1996; Janiszewski & Chandon, 2007).

The proposed QQ model attempts to specify and formalize these theories.

8.2. Broader implications

The use of quantum probability theory to understand human judgments becomes more

interesting when the same principles are applied to a wide range of different findings.

The same four postulates presented here to account for question order effects have also
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been applied to preferential choice (Lambert-Mogiliansky, Zamir, & Zwirn, 2009), cate-

gorization and decision interference (Busemeyer, Wang, & Lambert-Mogiliansky, 2009),

probability judgment errors (Busemeyer, Pothos, Franco, & Trueblood, 2011), inference

judgments (Trueblood & Busemeyer, 2011), similarity judgments (Pothos, Busemeyer, &

Trueblood, 2013), and strategic decision making (Pothos, Busemeyer, 2009). Different

applications of quantum probability theory also have been used to account for findings

in perception (Atmanspacher, Filk, & Romer, 2004; Conte et al., 2009; Atmanspacher &

Filk, 2013), conceptual combinations (Aerts, 2009; Aerts & Gabora, 2005; Aerts,

Gabora, & Sozzo, 2013), human memory (Bruza, Kitto, Nelson, & McEvoy, 2009; Brai-

nerd, Wang, & Reyna, 2013), risky decision making (Yukalov & Sornette, 2010), and

personality measurement (Blutner & Hochnadel, 2009). Quantum random walk models

have also been developed to account for dynamic decision process (Busemeyer, Wang,

& Townsend, 2006; Fuss & Navarro, 2013). In conclusion, quantum probability theory

provides a broad, coherent, and viable new approach to understanding human decision

and cognition (Busemeyer & Bruza, 2012; Khrennikov, 1999; Pothos & Busemeyer,

2012).
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Notes

1. This article is not about a quantum mechanical physics model. We only use the

mathematical principles of quantum probability. Sometimes this is referred to as a

quantum structure (Aerts, 2009), quantum-like (Khrennikov, 2010), or generalized

quantum (Atmanspacher, Romer, & Wallach, 2002) application of quantum theory.

2. For a recent review, see Busemeyer and Bruza (2012), the introduction to this spe-

cial issue (Wang, Busemeyer, Atmanspacher, & Pothos, 2013), and an earlier spe-

cial issue on quantum cognition (Bruza, Busemeyer, & Gabora, 2009). See Hughes

(1989) for a general introduction to quantum theory.

3. Note that the law of reciprocity only holds for transitions between rays (i.e., one-

dimensional subspaces) and not between higher dimensional subspaces. The QQ

model can be arbitrarily high dimensional, and hence the event subspaces (i.e., atti-

tude question measurements) and projectors to the subspaces (i.e., evaluations of

the attitude questions) can be arbitrarily high dimensional. However, the projections

(i.e., updated attitude state), such as SA and SB, are always rays, and therefore, the

law of reciprocity applies to the QQ model although the model can be arbitrarily

high dimensional.
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Appendix

The purpose of this appendix is to briefly introduce the basic axioms of quantum
theory and then to derive the QQ equality. We use the Dirac bracket notation so that if |
S〉 is vector, then 〈S| corresponds to its adjoint representation and 〈S|T〉 represents the
inner product between two vectors. According to quantum theory, events are represented
as subspaces of a Hilbert space. Corresponding to each event A, there is an orthogonal
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projector PA. The state of a quantum system is represented by a unit length vector |S〉
within the Hilbert space. The probability of event A equals the squared length of the pro-
jection p(A) = ‖PA | S〉‖2. If event A is observed, then the state is updated according to
L€uder’s rule |SA> = PA| S〉/ ‖PA | S〉‖ .

Consider again the Clinton and Gore questions described in the text. We start by
expanding the probability for answering “yes” to Clinton:

kPC�Sk2¼kPC�I�Sk2¼kPC�ðPGþðI�PGÞÞ�Sk2¼kPC�PG�SþPC�ðI�PGÞ�Sk2
¼kPC�PG�Sk2þkPC�ðI�PGÞ�Sk2þhSjPG�PC�PC�ðI�PGÞjSi
þhSjðI�PGÞ �PC�PC�PGjSi

¼kPC�PG�Sk2þkPC�ðI�PGÞ�Sk2þhSjPG�PC�PC�ðI�PGÞjSi
þhSj�PG�PC�PC�ðI�PGÞjSi�

¼kPC�PG�Sk2þkPC�ðI�PGÞ�Sk2þ2�Re½hSjPG�PC�PC�ðI�PGÞjSi�
¼kPC�PG�Sk2þkPC�ðI�PGÞ�Sk2þ2�Re½hSjPG�PC�ðI�PGÞjSi�;

and the latter follows from the idempotent property of projectors. (The symbol x* used in

the above derivation refers to the complex conjugate of x.) Recall that

TPC ¼ kPG � Sk2 � kPC � SGk2 þ kP�G � Sj2 � kPC � S�Gk2

¼ kPC � PG � Sk2 þ kPC � ðI � PGÞ � Sk2:

Therefore, the order effect for Clinton can be expressed as

CC ¼ TPC � kPC � Sk2 ¼ 2 � Re½hSjPG � PC � ðI � PGÞjSi�:

Immediately, we see that if PG and PC commute so that PG�PC = PC�PG then
PG�PC�(I�PG) = PC�PG�(I�PG) = 0 and we predict NO order effect. Thus non-commut-
ing projectors are a necessary condition for order effects. Now let us re-examine

CC ¼ TPC � kPC � Sk2 ¼ �2 � Re½hSjPG � PC � ðI� PGÞjSi�:
¼ �2 � Re½hSjPG � PCjSi � hSjPG � PC � PGjSi�
¼ �2 � Re½hSjPG � PCjSi � kPC � PG � Sk2�
¼ �2 � Re½hSjPG � PCjSi� þ 2 � kPC � PG � Sk2
¼ 2kPG � Sk2 � kPC � SGk2 � 2 � Re½hSjPG � PCjSi�:

In general, the inner product is a complex number which always can be expressed as
〈S| PG � PC |S〉 = |〈S | PG � PC | S〉| [ cos (φ) + i sin φ]. The real part equals Re
[〈S| PG � PC |S〉] = |〈S | PG � PC | S〉| � cos (φ). By defining the ratio
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R ¼ jhSkPG � PCjSij=ðkPC � Sk � kPG � SkÞ;
then according to the Cauchy–Schwarz inequality, 0 ≤ R ≤ 1. Finally, we can express

CC ¼ TPC � kPC � Sk2 ¼ 2 � kPC � PG � Sk2 � 2 � R cosð/Þ � kPC � Sk � PG � Sk;
¼ 2 � kPG � Sk2 � kPC � SGk2 � 2 � hkPC � Sk � kPG � Sk

with h = R cos (φ) and �1≤ h ≤ + 1, which is the similarity index referred to in the

main text. Similarly, the order effect for Gore equals

CG ¼ TPG � kPG � Sk2 ¼ 2 � kPG � PC � Sk2 � 2 � Re½hSkPC � PGjSi�;

but Re[〈S | PC � PG | S〉] = Re[〈S | PG � PC | S〉] so that

CG ¼ 2 � kPC � Sk2 � kPG � SCk2 � 2 � h � kPC � Sk � kPG � Sk:

These two order effects share the same term,

2 � hkPC � Sk � kPG � Sk;
and therefore together they imply the relation

0¼ð2�pðGyCyÞ�CcÞ�ð2�pðCyGyÞ�CGÞ
¼½2�pðGyCyÞ�pðGyCyÞ�pðGnCyÞþpðCyÞ�
�½2�pðCyGyÞ�pðCyGyÞ�pðCnGyÞþpðGyÞ�
¼pðGyCyÞ�pðGnCyÞþpðCyGyÞþpðCyGnÞ
�pðCyGyÞþpðCnGyÞ�pðGyCyÞ�pðGyCnÞ
¼½pðCyGnÞþpðCnGyÞ��½pðGyCnÞþpðGnCyÞ�¼q:

Note that this property was derived independently by Niestegge (2008) for other

purposes (an axiomatic analysis of quantum theory rather than a test of question order

effects).
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