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Abstract

Memory exhibits episodic superposition, an analog of the quantum superposition of physical

states: Before a cue for a presented or unpresented item is administered on a memory test, the

item has the simultaneous potential to occupy all members of a mutually exclusive set of episodic

states, though it occupies only one of those states after the cue is administered. This phenomenon

can be modeled with a nonadditive probability model called overdistribution (OD), which imple-

ments fuzzy-trace theory’s distinction between verbatim and gist representations. We show that it

can also be modeled based on quantum probability theory. A quantum episodic memory (QEM)

model is developed, which is derived from quantum probability theory but also implements the

process conceptions of global matching memory models. OD and QEM have different strengths,

and the current challenge is to identify contrasting empirical predictions that can be used to pit

them against each other.

Keywords: Episodic superposition; Overdistribution; Fuzzy-trace theory; Quantum probability;

Recognition; Source monitoring

1. Introduction

In this article, we consider how best to explain and model a memory analog of the

superposition principle, which is the physical law that stimulated the development of

quantum probability. According to that principle, before a measurement of a physical sys-

tem is taken, the system has a simultaneous potential to occupy all possible combinations

of its physical states or properties, notwithstanding that those combinations are mutually
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incompatible, but it occupies only one of them after a measurement is taken. The classi-

cal demonstrations are the Stern–Gerlach experiment on vertical and horizontal compo-

nents of angular momentum in spin-½ particles (Gerlach & Stern, 1922) and the

Feynman two-slit experiment on electron landing distributions (Feynman, Leighton, &

Sands, 1965). In the Stern–Gerlach experiment, sequences of spin measurements show

that prior to measurement, individual particles have the simultaneous potential to spin up,

down, left, and right. In the two-slit experiment, sequences of landing distributions at a

detector after a stream of electrons passes through a single aperture A versus a single

aperture B versus both apertures show that prior to the landings, individual electrons have
the simultaneous potential of passing through A, through B, or through neither.

The phenomenon that we focus on in this article, episodic subadditivity, is produced

by a memory analog of the two-slit experiment. We sketch the phenomenon in the first

section below and summarize results from prior experiments that provide grist for theoret-

ical explanation. In the second section, we discuss an explanation that is predicated on a

memory principle called over-distribution and present new experimental data for a model

that implements that principle. In the third section, we discuss a quantum superposition

explanation that grows out of recent work in quantum cognition by Busemeyer and col-

leagues (Busemeyer & Bruza, 2012; Busemeyer, Wang, & Lambert-Mogiliansky, 2009;

Busemeyer, Wang, & Townsend, 2006) and present results for a model that implements

this alternative explanation. In the final section, we briefly compare the results for the

two models.

2. Memory slits

The memory paradigm that we will be considering, conjoint recognition, bears consid-

erable resemblance to the Feynman two-slit experiment at a procedural level and also

with respect to the findings that it produces. The procedural resemblance lies in the fact

that subjects respond to recognition tests that open different “memory slits” through

which they are told to allow only items that occupy a stipulated episodic state to pass.

There are usually two memory slits, denoted T and R for reasons that will become appar-

ent presently, and the items that are supposed to pass through T occupy episodic states

that exclude those that are occupied by the items that are supposed to pass through R.

There are two versions of the conjoint recognition paradigm, an item-memory version

(Brainerd, Reyna, & Mojardin, 1999) and a source-memory version (Brainerd, Reyna,

Holliday, & Nakamura, 2012), which involve different varieties of mutual exclusivity of

episodic states. The exclusivity is logical in the item-memory version (an item cannot be

both presented and not presented) and empirical in the source-memory version (it can be

arranged that an item only originates from one source).

In the item version, subjects first encode a set of memory targets, typically a word,

picture, or sentence list. They then respond to a recognition test on which three distinct

types of test cues are administered: (a) targets (e.g., chair, robin, steak, …); (b) distrac-

tors that preserve salient features of targets, usually their meaning (e.g., sofa, oriole,
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roast, …); and (c) distractors that are semantically and physically unrelated to targets

(e.g., lake, car, mayor, …). These three types of test cues are then factorially crossed

with three types of recognition instructions: (d) accept targets but reject both related and

unrelated distractors (abbreviated as T); (e) accept related distractors but reject both tar-

gets and unrelated distractors (abbreviated as R); (f) accept targets and related distractors

but reject unrelated distractors (abbreviated as TR). Note the analogy between the T, R,

and TR measurements and the A, B, and AB measurements in the Feynman two-slit

experiment. Note, too, that the episodic states specified in the instructions about which

cues to accept are mutually exclusive, like the notion of a discrete particle having the

simultaneous potential to occupy different spatial positions. To be clear about that, a test

cue cannot simultaneously be an item that was presented on the study list and an item

that was not presented on the study list.

The surprising finding is that many experiments with this paradigm point to the conclu-

sion that before a memory test for a cue is administered, cues for presented items (chair,
robin, steak) or for unpresented related items (sofa, oriole, roast) have the simultaneous

potential to occupy mutually incompatible episodic states (for a review, see Brainerd &

Reyna, 2008). Furthermore, an item’s remembered episodic state seems to be an emergent

property of our memory tests, rather than a stable property of memory itself. How all of

this works and how evidence of this episodic superposition is secured can be explained

with the aid of Table 1.

In Table 1, the operational distinction between superposition, true memory, false mem-

ory, and forgetting is illustrated for the related distractor Coke when subjects must

accept/reject three statements about it after studying a list on which the targets Pepsi,
7-Up, and Sprite appeared: (a) It is a target. (b) It is new but related to a target. (c) It is

either a target or new but related to a target. True memory for Coke means that subjects

remember it as being absent from the study list but related to items that were on the list.

If so, the second and third statements will be accepted, and the first will be rejected,

which is the pattern in the first column of Table 1. False memory for Coke means that

subjects remember it as having been on the study list—as being a target rather than a

related distractor. If so, the first and third statements will be accepted, and the second will

be rejected, which is the pattern in the second column of Table 1. Forgetting means that

subjects remember Coke as not having been on the study list and as not being related to

Table 1

Operational definition of superposition in semantic false memory

Memory State

True Memory False Memory Superposition Forgotten

Coke: target? No Yes Yes No

Coke: new but related to target? Yes No Yes No

Coke: target or new but related to target? Yes Yes Yes No

Note. Coke is a semantically related distractor on a test list, following a study list on which Pepsi, 7-Up, and
Sprite were targets.
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anything on the study list—as being an unrelated distractor rather than a target or a

related distractor. If so, all three statements will be rejected, which is the pattern shown

in the last column of Table 1. Superposition refers to the logically contradictory situation

in which Coke is remembered as being a target and a related distractor. If so, all three

statements will be accepted, which is the pattern in the third column of Table 1. Finally,

note that if the test probe were a target (e.g., Pepsi) rather than a related distractor, the

third and fourth columns of Table 1 would still be the superposition and forgetting col-

umns, but false memory would correspond to the first column and true memory to the

second.

Table 1 also illustrates the key point that superposition cannot be separated from true

or false memory in a standard experiment in when subjects only make old/new judgments

because, assuming appropriate corrections for response bias: (a) Acceptance of “It is a

target” for a target does not guarantee rejection of “It is new but related to a target” (true

memory), and (b) acceptance “It is a target” for a related distractor does not guarantee

rejection of “It is new but related to a target” (false memory) Thus, when Pepsi is pre-

sented as a cue for an old/new judgment in a standard design, an “old” response may

mean true memory or superposition, and likewise, when Coke is presented as a cue for

an old/new judgment in a standard design, an “old” response may mean false memory or

superposition. However, conjoint recognition designs are able to disentangle these possi-

bilities by factorially crossing the three types of test cues (targets, related distractors,

unrelated distractors) with the three types of probes in Table 1, which are denoted T (for

“target”), R (for “related distractor”), and T[R (for “target or related distractor”), respec-

tively. Only one probe is administered per cue to individual subjects, naturally, to avoid

repeated testing effects, but across subjects, all three probes are administered for each

cue.

We now show how conjoint recognition separates superposition from true memory,

false memory, and forgetting, and to do that, we need some simple notation for measure-

ments of these states. For any arbitrary test cue, let P(T\~R), P(~T\R), P(T\R), and P
(~T\~R) be the probabilities that the cue occupies the target, related distractor, both tar-

get and related distractor, and unrelated distractor states, respectively. It is easy to see

how one would normally obtain empirical estimates of the probabilities of the cue occu-

pying the target, related distractor, and unrelated distractor states. Respectively, those val-

ues are just the probability of accepting a cue under T instructions, which will be

denoted P(T), the probability of accepting the cue under R instructions, which will

be denoted P(R), and the probability of rejecting a cue under TR instructions, which

will be denoted 1�P(T[R). Estimating the “both” (superposition) state is quite another

matter, owing to subjects’ metacognitive knowledge of logical exclusivity. We cannot

administer memory probes such as “Coke is both a target and a related distractor” or

“Pepsi is both a target and a distractor.” Thanks to meta-cognitive knowledge, subjects

would simply respond “no” to such probes, and if they responded “yes,” they would

probably be dropped from the experiment for inattentiveness or sheer perversity. This

obstacle to direct measurement is overcome by taking advantage of a mathematical con-

straint that flows from target-distractor exclusivity.
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Specifically, we take advantage of a constraint between P(T), P(R), and P(T[R) that
happens to be the same as the additivity constraint that classical physics imposes in the

Feynman two-slit experiment when A and B are both open. Because targets and distrac-

tors are mutually exclusive, it is objectively true that P(T\R) = 0. From the perspective

of episodic memory, however, we can entertain the possibility that some cues are

accepted under T instructions because retrieved information is consistent with both the T
and R states, rather than T only, and that the same circumstance may govern responses

under R instructions. If either or both of these scenarios holds, then P(T\R) > 0. To esti-

mate the actual value of P(T\R), we exploit the familiar rule of probability theory that

for any two events T and R, the sum of their probabilities equals the probability of their

disjunction plus the probability of their conjunction; that is, P(T) + P(R) = P(T[R) +
P(T\R). Note that if P(T\R) = 0, the relation between P(T) + P(R) and P(T[R) must

be additive; that is, P(T) + P(R) = P(T[R). Suppose, however, that some test cues

occupy the logically contradictory superposition state of being remembered as both pre-

sented and unpresented, so that P(T\R) > 0. It follows that rather than being additive,

the relation between P(T) + P(R) and P(T[R) must be subadditive. Specifically,

P(T) + P(R) > P(T[R) because according to the rule, P(T) + P(R)�P(T\R) =
P(T[R), and the larger the difference between P(T) + P(R) and P(T[R), the more

items are being remembered as being both presented and unpresented. It is crucial to

bear in mind here that in an actual experiment, no particular relation between

P(T) + P(R) and P(T[R) is forced by the conjoint recognition design; indeed, the

observed relation could be superadditive as well additive or subadditive.

For a target such as Pepsi or a related distractor such as Coke, then, the quantity

P(T\R) = P(T) + P(R)�P(T[R) indexes the extent to which cues are superposed on

multiple episodic states of an experiment before episodic memory is measured—notwith-

standing the mutual exclusivity of those states. Positive values demonstrate episodic

superposition; negative and zero values rule it out. Now that we understand how episodic

superposition is measured, what do the data show?

They provide strong evidence of superposition. The initial evidence was reported by

Brainerd and Reyna (2008), who reviewed over 100 previously published sets of conjoint-

recognition data. All of the experiments conformed to the general methodology that was

described above, with the materials that supplied the targets and related distractors varying

from words to pictures to sentences to narratives. A convenient method of summarizing

the data for both targets and related distractors is to compute the ratio [P(T) + P(R)] �
P(T[R) for each data set, where, again, P(T), P(R), and P(T[R) are the observed proba-

bilities of accepting cues (either targets or related distractors) under T, R, and TR instruc-

tions, respectively. Note that if P(T\R) > 0, so that the relation between P(T) + P(R) and
P(T[R) is subadditive for a data set, the ratio [P(T) + P(R)] � P(T[R) must exceed

unity. We computed this ratio for all of the data sets that were reviewed by Brainerd and

Reyna. The results appear in Fig. 1, where values of [P(T) + P(R)] � P(T[R) have been

plotted against the corresponding values of P(T) + P(R).1

The subadditivity picture could not be more apparent, for both targets and related

distractors. The target data are plotted in panel A, and the related distractor data are plotted
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in panel B. The question of interest is whether [P(T) + P(R)] � P(T[R) exceeds unity,

and it can be seen that it does in the great preponderance of data sets, for both targets and

related distractors. The subadditivity patterns in panels A and B can be tested for

statistical significance in two ways. First, one can compute v2 tests of goodness-of-fit, or

second, one can compute one-sample t tests. In the v2 tests, additivity/superadditivity is

the null hypothesis and subadditivity is the alternative hypothesis, so that one simply

counts the number of points that fall above the unity line versus the number that fall on or

below it and evaluates the null hypothesis’s prediction that all points will fall on or below

the line. In the t-tests, one merely computes the mean of the ratio [P(T) + P(R)] �
P(T[R) for the plotted data and then computes a one-sample test in which the hypothesized

mean value of the ratio is ≤ 1. With the data sets in Fig. 1, not surprisingly, these v2 and

t-tests produce null hypothesis rejections at very high levels of confidence (all ps < .001).

More recent findings that revealed the same pattern as in Fig. 1 and tested hypotheses

about manipulations that might affect levels of superposition were reported by Brainerd,

(A)

(B)

Fig. 1. The superposition effect in the conjoint recognition data sets reviewed by Brainerd and Reyna

(2008), which is the statistic [P(T) + P(R)] � P(T∪R). Data for presented targets are plotted in panel A, and

data for unpresented related distractors are plotted in Panel B. In both instances, dots that fall above the line

indicate data sets in which a certain proportion of the items were remembered as being both targets and

related distractors.
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Reyna, and Aydin (2010). In all of the results in Fig. 1, superposition was measured at the

group level (i.e., using data that had been pooled across subjects). A methodological adjust-

ment in the experiments reported by Brainerd et al. allowed superposition to be computed at

the level of individual subjects as well. Robust superposition was again observed in the

group data, but further, it proved to be the dominant pattern at the individual level. Within

each of the various conditions of the first experiment reported by Brainerd et al., for

instance, 85% of the subjects, on average, exhibited superposition.

As mentioned, there are two versions of the conjoint-recognition paradigm. Although

the above evidence of superposition is extensive, all of it is for the item version. It is nat-

ural to ask whether the picture is the same for the source version. This is far from idle

speculation because the nature of the target-distractor exclusivity is fundamentally differ-

ent in the two paradigms. It is logical in the item version but empirical in the source

version. The source procedure runs as follows. First, instead of encoding one set of mem-

ory targets, subjects encode two or more sets. In the simplest case, one set of targets is

encoded in context C1, while a second set is encoded in a different context C2. The sets

are mutually exclusive because no target that appears in one context can appear in the

other. Typically, the two contexts are List 1 and List 2, with targets on List 1 appearing

in a font (e.g., Arial) and color (e.g., red) that are different from the font (e.g., Broadway)

and color (e.g., blue) in which List 2 targets appear. Second, subjects respond to a recog-

nition test on which three distinct types of test cues are administered: (a) C1 targets (e.g.,

factory, shoes, diamond, …); (b) C2 targets (e.g., tower, library, home, …); and (c) unp-

resented distractors that are semantically and physically unrelated to targets (e.g., cell,
engine, ocean, …). The three types of cues are factorially crossed with three types of rec-

ognition instructions: (d) T: accept C1 targets but reject C2 targets and distractors; (e) R:

accept C2 targets but reject C1 targets and distractors; and (f) TR: accept both C1 and

C2 targets but reject distractors. Thus, the incompatibility between targets and distractors

is empirical in that no target that was presented in C1 was also presented in C2. Subjects

are informed of this arrangement before they encode any of the targets, and they are

reminded of it before they respond to the recognition test.

Nevertheless, Brainerd et al. (2012) found, in a series of experiments, that this

paradigm produced robust evidence of superposition in source memory. Across the exper-

iments, at the group level, the average value of the ratio [P(T) + P(R)] � P(T[R) was

far above unity. At the individual level, across experiments, nearly three-quarters of the

subjects displayed superposition. Thus, regardless of whether different episodic states

were mutually exclusive for logical or empirical reasons, data from conjoint-recognition

experiments point to the conclusion that before recognition tests are administered,

episodic memory is in a superposition of incompatible episodic states.

3. Modeling episodic superposition: Model and data

Superposition was not a serendipitous finding. It was predicted by a theoretical concep-

tion of how retrieval operates, which is called overdistribution (OD). That conception is
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implemented in a mathematical model of the paradigm, whose parameters have specific

process interpretations. When this OD model is analyzed, subadditive relations between

P(T) + P(R) and P(T[R) fall out as predictions; that is, either these relations are subad-

ditive or the model will not fit conjoint-recognition data, so that statistical tests of fit are

also tests of superposition.

This forms the substance of the present section, which begins by presenting the model,

the process interpretation of its parameters, and the derivation of the superposition effect.

The derivation specifies that superposition is caused by certain types of memory represen-

tations whose retrieval distributes test cues to too many episodic states, even when those

states are mutually exclusive. Next, we show how this model is applied in research, by

reporting a new experiment with the source version of conjoint recognition, fitting the

model to the data, estimating its parameters, and showing how the parameters predict

exact amounts of superposition.

3.1. Overdistribution model

The model (Brainerd et al., 1999; Brainerd, Wright, Reyna, & Mojardin, 2001) imple-

ments fuzzy-trace theory’s dual-trace analysis of representation (Reyna & Brainerd, 1995).

When items are presented during the study phase, subjects are assumed to store two types

of episodic traces in parallel: verbatim and gist. Verbatim traces are representations of

items’ exact surface content—their orthography and phonology in the case of words—
along with contextual features (criterial and noncriterial) that accompany their presenta-

tion. (Storing contextual features is what makes memory representations “episodic,” of

course. Criterial features distinguished one context from another, whereas noncriterial fea-

tures do not.) Gist traces are representations of items’ semantic content and other relational

information, along with contextual features (because gist traces, too, are episodic). Here, a

distinction that has been significant in explaining counterintuitive findings about false

memory is that some of the semantic content that is stored in gist traces is particular to

individual items while other semantic content connects multiple items (Brainerd & Reyna,

2012). For instance, suppose, as in our earlier example, that Pepsi, 7-Up, and Sprite all

appear on a study list. “Cola” is a semantic feature that applies to one of these words,

while “soft drink” applies to all. On conjoint recognition tests, test cues provoke retrieval

of verbatim and gist traces, both of the cued items and other items, in parallel, with the

two types of traces leading to the same response under some types of instructions but dif-

ferent responses under other instructions. Because verbatim traces store realistic surface

features, their retrieval produces vivid mental reinstatement of their prior presentation, a

phenomenology that is usually called recollection in the memory literature. Because gist

traces do not store realistic surface features, their retrieval produces global feelings of con-

fidence that items with this meaning were recently studied without vivid recollection of

their actual presentation, a phenomenology that is usually called familiarity (although vivid

gist memories can also occur for semantically related lists; Brainerd & Reyna, 2005).

The OD model that implements these distinctions runs as follows.2 As before, for an

arbitrary test cue, let P(T), P(R), and P(T[R) be the probabilities of accepting a T probe
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(agreeing that it is a target), an R probe (agreeing that it is a related distractor), or a TR

probe (agreeing that it is not an unrelated distractor). When the test cue is a target, such

as Pepsi, the model’s expressions for these empirical probabilities are

PTðTÞ ¼ VT þ ð1� VTÞð1� ETÞGT; ð1Þ

PTðRÞ ¼ ð1� VTÞET þ ð1� VTÞð1� ETÞGT; ð2Þ

and

PTðT [ RÞ ¼ VT þ ð1� VTÞET þ ð1� VTÞð1� ETÞGT: ð3Þ

VT is the probability that subjects retrieve verbatim traces of Pepsi, ET is the probabil-

ity that they retrieve verbatim traces of other related targets (e.g., Sprite; that is, a cue for

one target has the ability to retrieve the verbatim trace of another target, causing subjects

to conclude that the target is a related distractor), and GT is the probability they retrieve

gist traces of Pepsi. (The T-subscripts indicate that the retrieval cue is a target rather than

a related distractor.) These expressions implement simple, uncontroversial psychological

ideas. For instance, if verbatim traces of Pepsi are retrieved, subjects ought to accept T

probes, reject R probes, and accept TR probes because they recollect this word’s prior

presentation. Also, if neither verbatim traces of Pepsi nor verbatim traces of closely

related targets are retrieved but gist traces of Pepsi are retrieved, subjects ought to accept

all three types of probes because the semantic information in such traces is consistent

with Pepsi being a target or a related distractor.

Although the psychological ideas in Eqs. 2–4 are uncontroversial, the expressions

lead to the surprising [PT(T) + PT(R)] > PT(T[R) result. To see that, first add the right

sides of Eqs. 2 and 3, to produce the sum VT + (1�VT)ET + 2(1�VT)(1�ET)GT, and

then subtract the right side of Eq. 4, the difference being (1�VT)(1�ET)GT. Thus, the

model predicts superposition as a qualitative pattern, and quantitatively, it predicts exact
amounts of superposition once the three parameters are estimated. Psychologically, the

superposition prediction falls directly out of the notion that a gist trace can be used to

accept any cue (e.g., Pepsi) whose semantic content (e.g., “soft drink”) matches that of

the trace, regardless of whether it happens to be a target or a distractor. This means

that superposition is due to a gist-driven overdistribution process. Logically, a target

cue such as Pepsi cannot be both a target and related distractor, but its gist trace is

consistent with both episodic states. Hence, processing gist traces on tests for targets

will tend to distribute them to the related distractor state as well as to the target state,

notwithstanding the logical incompatibility, and processing gist traces on tests for

related distractors will distribute them to the target state as well as the related distractor

state.

To see that this is so, consider the model’s expression for acceptance of related distrac-

tor cues such as Coke under T, R, and TR instructions, where the R-subscripts denote

that the test cue is a related distractor rather than a target:
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PRðTÞ ¼ ð1� VRÞPR þ ð1� VRÞð1� PRÞGR; ð4Þ

PRðRÞ ¼ VR þ ð1� VRÞð1� PRÞGR; ð5Þ

and

PRðT [ RÞ ¼ VR þ ð1� VRÞPR þ ð1� VRÞð1� PRÞGR: ð6Þ

VR and GR are the probabilities of retrieving verbatim and gist traces, respectively, of

related distractors’ corresponding targets (e.g., Pepsi for the distractor Coke). PR is the

probability that subjects retrieve ersatz verbatim memories of distractors—traces that pro-

duce illusory vivid recollections of distractors’ prior “presentations.” The presence of this

process in the model is consistent with a well-established finding in the literature: when

subjects falsely accept related distractors as targets, it is often accompanied by phantom

recollective experiences (e.g., Frost, 2000; Heaps & Nash, 2001). The key point is that

when the right sides of Eqs. 5 and 6 are added and the right side of Eq. 7 is subtracted from

the sum, superposition shows up again. Specifically, [PR(T) + PR(R)] > PR(T[R) because
[PR(T) + PR(R)]�PR(T[R) = (1�VR)(1�PR)GR. Another point of interest is that the psy-

chological basis for superposition is the same OD principle: Although Coke is a related dis-

tractor and not a target, the fact that gist retrieval is consistent with both episodic states

means that it will distribute Coke to the target state as well as the related distractor state.

3.2. Illustrative experiment

Next, we briefly apply OD to the data of an experiment that used the source version of

conjoint recognition. Mathematically, OD is identical for the source and item paradigms,

the only difference lying in some of the memory processes that the parameters refer to.

We relegate the discussion of those differences to the Appendix.

Seventy subjects participated in a design that involved two steps. First, they were

exposed to three word lists (List 1, List 2, and List 3), each consisting of 36 items

(2-word starting and ending buffers, plus 32 focal words). To ensure that each list was dis-

tinctive, the background color against which the words were presented differed between

the lists, as did the fonts in which the words were printed. Second, the subjects responded

to a 192-item test list composed of four types of test cues: List 1 targets, List 2 targets,

List 3 targets, and distractors. The four types of test cues were factorially crossed with

four types of recognition probes, to which the subjects responded “accept” or “reject”: (a)

presented on List 1; (b) presented on List 2; (c) presented on List 3; and (d) presented on

List 1 or List 2 or List 3. Of the 192 test items, there were 12 exemplars of each of the

four types of cues, resulting 48 probes in total. Each cue was tested with only one of the

four types of recognition probes, within an individual subject. However, the cues were

rotated through the four types of recognition probes across subjects—so that overall, each

cue was tested with each type of probe one-quarter of the time. Thus, the methodology
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extended the simple two-slit design to three slits (List 1, List 2, List 3), which can be han-

dled with a relatively minor adjustment of the model (see Appendix).

The experiment also included two content manipulations, word concreteness and word

frequency, that were factorially crossed with each other on both the study and test lists.

These content manipulations were included for theoretical reasons—that there were rea-

sons to predict that superposition would be more marked for abstract words and low-fre-

quency words (Brainerd et al., 2012). The exact reasons are that experiments in the false

memory literature suggest that abstract words create weaker verbatim traces that concrete

words and that low-frequency words create weaker verbatim traces than high-frequency

words (Brainerd & Reyna, 2005) so that abstract words and low-frequency words would

lower the values of the verbatim parameters of the OD model, VT and VR, which would

then increase superposition by increasing the values of the (1�VT)(1�PT)GT and (1�VR)

(1�PR)GR terms. However, in this article, we do not consider this feature of the experi-

ment further. Instead, we concentrate on the fundamental question of whether OD, which

predicts superposition as a qualitative pattern, fits the data and is able to make quantita-

tive predictions that fall within traditional statistical boundaries.

The fit of the model has already been established by Brainerd et al. (2012)—using the

usual indexes of fit, such as G2 difference. The G2 difference is G2
OD�G2

saturated = �2�ln
(Likelihood(data|OD)) when pi(yes|m) is based on the OD model, and G2

saturated = �2�ln
(Likelihood(data|saturated)) when pi(yes|m) is based on the saturated model. In the satu-

rated model, pi(yes|m) = ni(yes) is the observed proportions in the experiments. That is,

the saturated model has the best fit possible since it perfectly describes the observed data;

thus, it is used as a comparison against the OD model. For the present experiment, a G2

critical value (based on df = 24) of 36.42 was required to reject the null hypothesis of

model fit at the .05 level for the experiment as a whole. The model was fit using 72

parameters to 96 data points, which leaves 24 degrees freedom for the experiment as a

whole: There are 12 list-item conditions with 8 degrees of freedom (free response proba-

bilities) per condition. As shown in Eqs. A7–A14 in the Appendix, the model estimates a

total of six parameters for each of those conditions, four memory parameters and two

response-bias parameters. Thus, there are two remaining degrees of freedom for each con-

dition, and 12 9 2 = 24 degrees of freedom for the experiment as a whole. The observed

G2 difference value was 29.43, so that fit was acceptable. (At the level of individual con-

ditions, the null hypothesis of fit could not be rejected in any of the 12 conditions.) With

fit established, we compared observed levels superposition for the various conditions of

this experiment to the levels that were predicted by the model. The factorial structure

was 3 lists 9 2 levels of concreteness (concrete vs. abstract) 9 2 levels of frequency

(high vs. low), for a total of 12 conditions. Observed values of P(L1), P(L2), P(L3), and

P(L1[ L2[ L3), for each type of target cue (List 1, List 2, List 3) in each of the 12 con-

ditions, were calculated and corrected for response bias, using the distractor data (see

footnote 1). Those values are reported in Table 2. Next, the observed level of superposi-

tion was calculated for each condition, which is the statistic [P(L1) + P(L2) + P(L3)]�
P(L1[ L2[ L3), and those values are also reported in Table 2. It can be seen that this

experiment produced robust superposition effects: Across the 12 conditions, the average
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difference between the expected value of [P(L1) + P(L2) + P(L3)]�P(L1[ L2 [ L3),

which is zero, and its actual value is .38. This is a highly reliable difference. At the level

of individual subjects, averaging across the 12 conditions, more than 70% exhibited

superposition.

The next question is whether OD predicts observed levels of superposition with high

accuracy. We know from the previous section that in the simple two-slit design, the pre-

dicted amount for targets in a condition is just (1�VT)(1�ET)GT (The expression is

slightly different for the three-slit design; see Appendix.). To predict exact levels of

superposition for each condition, one simply estimates the parameters for each condition

and computes predicted values. That was done, and the predicted values were compared

to the corresponding observed values. The results are shown in Fig. 2, where it can be

seen that the predicted-observed correspondence was quite good, with 95% of the vari-

ance accounted for. Beyond fit, another question is the degree to which OD’s predictions

exactly calibrate reality that there is correspondence between the absolute values of each

Table 2

Bias-corrected acceptance probabilities and OD statistics

List-Context/Statistic

Word Content

High-frequency

Concrete

High-frequency

Abstract

Low-frequency

Concrete

Low-frequency

Abstract

List 1 targets

p(L1?) 0.37 0.27 0.48 0.39

p(L2?) 0.16 0.12 0.35 0.40

p(L3?) 0.17 0.13 0.28 0.36

p(L1 or L2 or L3?) 0.34 0.28 0.51 0.46

Subadditivitya 0.36 0.24 0.60 0.69

List 2 targets

p(L1?) 0.16 0.07 0.20 0.25

p(L2?) 0.18 0.30 0.35 0.32

p(L3?) 0.14 0.14 0.21 0.21

p(L1 or L2 or L3?) 0.32 0.38 0.36 0.41

Subadditivityb 0.16 0.13 0.40 0.37

List 3 targets

p(L1?) 0.15 0.15 0.23 0.24

p(L2?) 0.26 0.20 0.24 0.37

p(L3?) 0.31 0.24 0.36 0.35

p(L1 or L2 or L3?) 0.38 0.27 0.43 0.40

Subadditivityc 0.34 0.38 0.40 0.56

Notes. All tabled values were corrected for response bias, using the two-high threshold correction of signal

detection theory.
aReferring to Eqs. A7–A10, these subadditivity values were computed from (pM,L1 + pE2,L1 + pE3,L1)�pI,L1,
after each of these probabilities had been corrected for the influence of response bias.
bThese subadditivity values were computed from (pM,L2 + pE1,L2 + pE3,L2)�pI,L2, after each of these probabil-

ities had been corrected for the influence of response bias.
cThese subadditivity values were computed from (pM,L3 + pE2,L3 + pE1,L3)�pI,L3, after each of these probabil-

ities had been corrected for the influence of response bias.

12 C. J. Brainerd, Z. Wang, V. F. Reyna / Topics in Cognitive Sciences (2013)



condition’s observed and predicted superposition statistics. If calibration is exact, the

best-fitting regression equation will have an intercept of 0 and a slope of 1. It can be seen

in Fig. 2 that OD overpredicted the data of this experiment. The intercept was slightly

below zero, but the slope was 1.87.

To investigate whether overprediction is the rule with OD, we reanalyzed the data of

two previous experiments that used the same procedure and the same list conditions as

the present experiment—specifically, Experiments 3 and 4 of Brainerd et al. (2012). The

results are displayed in Fig. 3, with data from Experiment 3 appearing in Panel A and

data from Experiment 4 appearing in Panel B. Comparing the best-fitting regression equa-

tions across the data sets in Figs. 2 and 3, there is a slight tendency for the model to

over-predict superposition: Across data sets, the mean value of the intercept is �.02 and

the mean value of the slope is 1.25.

4. Modeling episodic superposition: Quantum model

Built upon basic quantum probability principles, an alternative model called quantum

episodic memory (QEM) model was formulated to account for the episodic OD effect. As

discussed in this special issue (Wang, Busemeyer, Atmanspacher, & Pothos, 2013),

quantum probability theory was developed during the process of inventing a new theory

of physics, quantum mechanics, to explain physical phenomena that seemed paradoxical

from a classical physics (and hence classical probability) perspective in the 1920s. Like-

wise, the subadditivity memory result is surprising and paradoxical only from the classi-

cal probability perspective. Then, why not drop the classical perspective and see whether

quantum probability theory can explain this result? The QEM model is motivated by this

Fig. 2. Observed levels of superposition across the List 9 Concreteness 9 Frequency combinations of the

experiment versus levels of superposition predicted by the OD model. The measure of the superposition is

the subadditivity statistic [P(C1) + P(C2) + P(C3)] � P(C1[C2[C3).
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idea. It is derived from the general principles of quantum probability theory described

next.

4.1. Some principles of quantum probability theory

Superposition is a basic principle of quantum probability theory. Classical probability

theory assumes that at any moment, a person is in a definite state with respect to possible

cognitive states. For example, in the 3-list conjoint recognition experimental paradigm, it

assumes that during the retrieval process, the memory-cue matching is in any one of the

following exclusive states: either verbatim List 1, or verbatim List 2, or verbatim List 3,

or the gist, or the distractors. This definite state can change (stochastically) across time;

but at each moment, the state is still definite, and the retrieval process produces a definite

(A)

(B)

Fig. 3. Observed levels of superposition versus levels of superposition predicted by the OD model for the list

conditions of two experiments reported by Brainerd et al. (2012). Panel A contains data from their Experi-

ment 3, while Panel B contains data from their Experiment 4. In both instances, the measure of superposition

is the subadditivity statistic [P(C1) + P(C2) + P(C3)] � P(C1[C2[C3).
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sample path. In contrast, quantum probability theory assumes that at any moment in the

retrieval process, a person is in an indefinite (i.e., superposition) state of episodic aware-

ness until a response is made. A superposition state is defined by the fact that all five

possibilities (verbatim List 1, verbatim List 2, verbatim List 3, the gist, and the

distractors) have the potential for being expressed, but none of the five can be assumed

at any moment. The superposition conception resonates with the fuzzy, ambiguous, uncer-

tain feelings associated with memory.

Classical probability theory represents an event, such as E, as a subset of the sample

space Ω, which contains all the events. A state is represented by a function P: 2Ω ?
[0,1], which assigns probabilities to events. In other words, P(E) is the probability

assigned to event E∈Ω. In contrast, quantum probability theory represents an event, such

as E, as a subspace of a vector space (a Hilbert space), V, and the vector space V con-

tains all the events. This is illustrated in Fig. 4. It is important to note that the vector

space can be arbitrarily high-dimensional although for the simplicity of illustration, a

simple three-dimensional vector space is used in this example. In Fig. 4, the event E subspace

is a plane spanned by the basis vectors X and Y, that is, the horizontal plane defined by the

X, Y axes in the figure. A different event can be a 1-dimensional ray along the X, Y, or Z
axe, or a two-dimensional plane spanned by the X, Z axes or the Y, Z axes, or even a

three-dimensional subspace spanned by X, Y, and Z (which then becomes the identity).

A state, such as a memory state, is represented by a unit length vector S ∈ V, which

assigns probabilities to events (the red line in Fig. 4). Corresponding the subspace E is a

projector, ME, which projects points in V (including the state S) onto E. The probability

Fig. 4. A simple three-dimensional illustration of basic quantum probability principles used in QEM.
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of an event is the squared length of the projection projecting the state vector S to the sub-

space E: P(E) = ||ME�S||2. In Fig. 4, the dotted blue line represents the projector ME,

which projects the state S onto the event subspace E. The solid blue line is the resulting

projection ME�S, whose squared length is the probability of the event E for the state S.

Observing the figure, it becomes clear that the geometric relations between the state

vector S and the subspaces of events determine the probability of the events. Also, the

state vector S in fact is a superpositional state with potential to be projected onto all pos-

sible event subspaces. The QEM model presented next is a five-dimensional model,

which is difficult to be illustrated visually and thus is only presented in a precise and

abstract manner, but it follows the exact conceptual ideas as shown in the simple example

in Fig. 4. In addition, there are many other differences between the quantum versus

classical probability theory (see the introduction article to this special issue), but the

current QEM model is simple and only needs to use a few mathematical principles of

quantum probability theory, as described above, to account for the subadditivity memory

result.

4.2. Quantum episodic memory model

First, the QEM model uses a superposition of feature vectors to represent the ambigu-

ous memory state. Using feature vectors to represent memory is commonly seen in cogni-

tive models of memory based on classical probability theory, such as MINERVA 2

(Hintzman, 1986, 1988), Search of Associative Memory (SAM; Raaijmakers & Shiffrin,

1981), Retrieving Efficiently from Memory (REM; Shiffrin & Steyvers, 1997), and the

Noisy Exemplar model (NEMO; Kahana & Sekuler, 2002). Specifically, in QEM, the

memory state is represented using a five-dimensional vector space spanned by five ortho-

normal basis vectors: V1, a vector representing verbatim List 1 features; V2, a vector

representing verbatim List 2 features; V3, a vector representing verbatim List 3 features;

G, a vector representing gist features; and U, a vector representing distractor features.

The memory state is theorized to be an ambiguous state that superposes these five types

of features. To capture this ambiguity, which cannot be done in the aforementioned

classical feature vector models of memory, QEM represents the memory state using a unit

length vector S formed by a superposition of the five basis vectors:

S ¼ ðv1 � V1 þ v2 � V2 þ v3 � V3 þ g � Gþ u � UÞ=c;
where c ¼ ðjv1j2 þ jv2j2 þ jv3j2 þ jgj2 þ juj2Þ: ð7Þ

In Eq. 7, v1, v2, v3, g, and u are the amplitudes of each basis vector, and c normalizes

the sum of the five basis states to maintain the unit length of S. (This normalization pro-

cedure is standard in probability models, either quantum or classical, to keep the proba-

bilities for all possible responses happening to the state S sum up to one.) As detailed

later, the memory state S is constructed depending on the cue presented on each test (i.e.,

List 1, List 2, List 3, or distractor).
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The five amplitudes (v1, v2, v3, g, u) used to form this superposition are parameters

in the QEM model. Only real valued amplitudes are needed to fit the model. The

parameter u is always set to be u = 1 because the normalization makes this parameter

arbitrary. In addition, in the experimental task, two of the recognition probes do not

match the test cue, and thus, the amplitudes of the verbatim features for these two

probes are equated. For example, if the cue is from List 1, then Lists 2 and 3 probes

do not match the cue. Thus, we set v2 = v3 in this case. Therefore, only three parame-

ters are needed to fit to the observed probabilities from four probe questions, which leave

one degree of freedom to test the model for each type of cue in the 3-list experiment

described earlier.

Second, based on quantum principles, QEM uses a projector to represent each of the

four types of recognition probe questions, which have “yes” (“accept”) or “no” (“rejec-

tion”) answers. In the current QEM implementation, the projector is a 5 9 5 diagonal

matrix M with appropriately set zeros or ones on the diagonal (detailed in next para-

graph). To answer a probe question is to project the memory state S to the probe M. This

projection process is similar to the “memory-cue matching” process theorized in the

above mentioned feature vectors in global memory models, but response probabilities are

computed differently. As introduced earlier, in quantum probability theory, the probability

of an event is the squared length of the projection projecting the state vector to the sub-

space representing the event. In QEM, the probability of a “yes” answer to a recognition

probe is the squared length of the projection ||M�S||2. The probability of a “yes” answer

to the OR probe is computed from 1�p[“no” to all the other three probes].

For example, consider when a List 1 test cue is presented. Define S1 as the superposi-

tional memory state. We fit three parameters (v1, v2 = v3, and g) to the four types of

probe questions: (a) M1 is a projector used to respond to the List 1 probe question (i.e.,

“Presented in List 1”?). Similar to the assumption of OD, both verbatim List 1 features

and gist features should lead to the answer “yes.” Under this assumption, M1 = diag

(1,0,0,1,0). The probability of answering “yes” to the List 1 probe is: P(List 1

response = yes | List 1 cue) =
||M1�S1||2. Similarly, (b) M2 is a projector used to respond to the List 2 probe question.

We allow both verbatim List 2 features and gist features to answer “yes.” Thus,

M2 = diag(0,1,0,1,0) and P(List 2 response = yes | List 1 cue) = ||M2�S1||2. (c) M3 is a

projector used to respond to the List 3 probe question. Both verbatim list 3 features and

gist features lead to the answer “yes.” Thus, M3 = diag(0, 0, 1, 1, 0) and P(List 3

response = yes | List 1 cue) = ||M3�S1||2. (d) The probability of “yes” to the OR probe is

P(OR response = yes | List 1 cue) = 1�||(I�M3)(I�M2)(I�M1)�S1||2, where I denotes the

5 9 5 identity matrix.

When a List 2 cue, a List 3 cue, or a distractor is presented, the same process occurs

with the following exceptions. For a List 2 cue, we set v1 = v3, and we estimated a new

memory state S2 with three new parameters. For a List 3 cue, we set v1 = v2, and we esti-

mated a new memory state S3 with three new parameters. For a distractor cue, we set

v1 = v2 = v3, and we estimated a new memory state S4 with two new parameters.
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4.3. An illustrative empirical test

QEM was used to estimate the parameters for the 3-list experimental data described

earlier. To be consistent and comparable with the OD model, the QEM model also fits

separate parameters to different experimental conditions. Maximum likelihood was used

to fit three parameters to each experimental condition (four conditions of concrete-

ness 9 frequency) for each list cue (List 1, List 2, List 3), and two parameters to each

experimental condition for each distractor cue. That is, across all the experimental condi-

tions and test cue combinations, QEM estimates 44 parameters in total. Each combination

has four “yes” and four “no” probabilities. We computed a G2 test statistic as follows.

The frequencies for each experimental condition and test cue are based on 70 subjects

with two observations per person for the List 1–3 cues and with six observations per per-

son for the distractor cues. Define ni(yes) and ni(no) as the proportions of “yes” and “no”

responses, respectively, to the probe of i, where i = 1, 2, 3 for List 1, 2, 3, and i = or for

the OR probe. Similarly, pi(yes|m) and pi(no|m) are the probabilities of “yes” and “no”

answers, respectively, for List i or the OR probe computed from a model m. The log like-

lihood for each experimental condition and test cue equals

Lnðlikelihood (datajmÞÞ ¼ ð2Þð70Þ � ½lnðp1ðyesjmÞ � n1ðyesÞÞ þ lnðp2ðyesjmÞ � n2ðyesÞÞ
þ lnðp3ðyesjmÞ � n3ðyesÞÞ þ lnðporðyesjmÞ � norðyesÞÞ
þ lnðp1ðnojmÞ � n1ðnoÞÞ þ lnðp2ðnojmÞ � n2ðnoÞÞ
þ lnðp3ðnojmÞ � n3ðnoÞÞ þ lnðporðnojmÞ � norðnoÞÞÞ:

ð8Þ

Let G2
QM = �2� ln(Likelihood(data|QEM)) when pi(yes|m) is based on the QEM model,

and G2
saturated = �2� ln(Likelihood(data|saturated)) when pi(yes|m) is based upon the satu-

rated model. In the saturated model, pi(yes|m) = ni(yes) are observed proportions in the

experiments. That is, the saturated model has the best fit possible since it perfectly describes

the observed data, and thus it is used as a comparison against the QEM model. Then, a G2

difference test is defined as follows: G2
diff = G2

QEM�G2
saturated, with df = the difference of

the numbers of parameters in the saturated model versus QEM = 64�44 = 20.3 Table 3

summarizes estimated parameters of the model and G2
diff statistics for each of the experi-

mental condition 9 test cue combinations. The G2
diff tests suggest that this simple quantum

episodic model can account for the observed data pattern reasonably well: It fits 13 out of

the 16 conditions successfully at the a = .05 level. The total G2
diff statistics across all 16

conditions is 26.75, which is not significant at the a = .05 level (the critical value is 31.41,

df = 20), suggesting that across all conditions, the model fits the data well.

5. Concluding comments

The superposition principle that originally stimulated the development of quantum

probability theory stipulates that before a measurement is taken, a physical system has
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the simultaneous potential to occupy all possible combinations of its states even though

the combinations are mutually exclusive, but it can only occupy one of them after a mea-

surement is taken. Thus, the physical states that are observed are emergent properties of

the measurement. We have considered a memory analog of this principle, episodic super-

position: Before a cue for a presented or unpresented item is administered on a memory

test, the item has the simultaneous potential to occupy mutually incompatible episodic

states. In most experiments, those states have been target (presented at study), related dis-

tractor (not presented but related), target and related distractor, and neither target nor

related distractor. In some recent experiments, the states have been context 1, context 2,

both contexts, and neither context. In either type of design, superposition of episodic

states is revealed by the finding that the probabilities of cues being remembered as

belonging to mutually exclusive states are subadditive; that is, P(T) + P(R) > P(T∪R),
where P(T) and P(R) are the respective probabilities of remembering a cue as belonging

to each of the mutually exclusive states and P(T∪R) is the probability of remembering

the cue as belonging to either of these states.

To date, episodic superposition has been explained via a core representational distinc-

tion that is used in false memory research—namely, verbatim versus gist traces of experi-

Table 3

The quantum episodic memory model: Estimated parameters and G2
diff tests

Parameters/G2
diff

Word Content

High-frequency

Concrete

High-frequency

Abstract

Low-frequency

Concrete

Low-frequency

Abstract

List 1 targets/cues

vt 0.6477 0.5996 0.6932 0.3860

vn 0.2009 0.1531 0.2425 0.3574

G 0.8706 0.8838 1.0710 1.2549

G2
diff 0.7661 0.4027 5.2442* 6.0463*

List 2 targets/cues

vt 0.4883 0.8106 0.5336 0.6527

vn 0.4473 0.3570 0.1444 0.3334

G 0.7178 0.9129 0.7861 0.9718

G2
diff 0.0154 1.0056 0.3671 0.1811

List 3 targets/cues

vt 0.6080 0.4264 0.6472 0.3433

vn 0.4725 0.2303 0.2849 0.2837

G 0.8271 0.9129 0.8449 1.0654

G2
diff 0.7108 0.2591 0.0156 0.5963

List 4 distractors

vt 0.1591 0.0983 0.0752 0.0770

vn 0.1591 0.0983 0.0752 0.0770

G 0.4478 0.5670 0.3575 0.4779

G2
diff 2.1029 0.9476 6.3242** 1.7665

Notes. vt and vn are the amplitudes of the target/cue list and the distractor (i.e., noise) lists, respectively.

*Significant deviation at the a = .05 level (the critical value is 3.84, df = 1).

**Significant deviation at the a = .05 level (the critical value is 5.99, df = 2).
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ence—and it has been modeled with OD, which implements that distinction with parame-

ters that estimate the respective probabilities that a cue will provoke verbatim and gist

retrieval on memory tests. Like support theory (Tversky & Koehler, 1994) and various

models of human probability judgment, OD is a neo-classical probability model—
“classical” in the sense that its parameter values must fall in the unit interval and “neo”

in the sense that probabilities do not obey the additivity axiom of classical probability.

Beginning with an initial review of 100 + data sets (Brainerd & Reyna, 2008), OD has

been applied to the types of experiments that produce episodic superposition, and it has

typically yielded good fits to those data.

Quantum probability theory also appears to provide a natural, intuitive account of the

subadditivity phenomenon. A 5-dimensional quantum model, QEM, was derived from the

basic principles of quantum probability theory and was found to fit the observed data in

13 of 16 conditions of an illustrative experiment. Compared to OD, it implements alterna-

tive process assumptions and uses different mathematical machinery to fit data. On the

process side, QEM formalizes the superposition principle as an ambiguous memory state

that mixes verbatim information from study lists, gist information, and distractor informa-

tion. The memory state changes depending on which cue is tested. In other words, the

memory state is constructed upon cue presentation. QEM’s feature vector representations

of memory are consistent with many global matching theories, such as MINERVA 2

(Hintzman, 1986, 1988), SAM (Raaijmakers & Shiffrin, 1981), REM (Shiffrin & Stey-

vers, 1997), and NEMO (Kahana & Sekuler, 2002). However, these representations are

derived from quantum probability theory, which provides a direct formalization of the

superposition concept as a fundamental ambiguity in the memory retrieval process. On

the mathematical side, global matching models have used various mathematical functions

to compute memory-cue matching probabilities, such as memory trace-cue dot product

(MINERVA 2) and Bayesian calculation of likelihood (REM). In QEM, as in other quan-

tum models, this probability is computed using the squared length of the projection,

which projects the memory state to the probe question.

We applied OD and QEM to a type of experiment that is known to produce consistent

episodic superposition results. The global fit test for OD did not produce a null hypothe-

sis rejection, and so OD was statistically acceptable. The model also fit the data of all of

the individual conditions. These results were no surprise because OD has delivered

acceptable fits to the data of other experiments of this sort (Brainerd et al., 2012). How-

ever, the global fit test of QEM also did not produce a null hypothesis rejection. The

model fits most of the individual conditions well—13 of 16 in fact—notwithstanding that

it is grounded in a different process conception of memory representation. Thus, both OD

and QEM performed well and comparably against the usual criterion of a global model

fit test. In other words, global fit tests gave comparable results for the two models, though

they differed slightly at the level of individual conditions. It is therefore important to con-

sider their relative strengths with respect to other properties of psychological models.

The main strengths of OD are its (a) theoretical specificity, (b) predictive power, and

(c) mathematical simplicity. Concerning (a), the process ideas that motivate OD are oper-

ationally well defined because they have figured in much prior research on false memory.
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Recently, those ideas have also been foci of experimentation in the neuroscience literature

(e.g., Dennis, Bowman, & Vandekar, 2012; Reyna, Chapman, Dougherty, & Confrey,

2012). Consequently, when OD posits that episodic superposition is a by-product of a

type of remembering in which verbatim retrieval fails but gist retrieval succeeds, we

know what that means operationally. Concerning (b), owing to the prior literature on

these same ideas, various manipulations have been identified that selectively enhance ver-

batim or gist retrieval (for a review, see Brainerd & Reyna, 2005). This means that OD

can predict particular configurations of manipulations that ought to increase or decrease

episodic superposition. Successful tests of such predictions have been reported for both

the item and source versions of conjoint recognition (Brainerd et al., 2010, 2012). Con-

cerning (c), the mathematical under-pinning of OD, multinomial modeling, is highly trac-

table and well understood by researchers (e.g., Batchelder & Riefer, 1999). The statistical

machinery for such modeling relies on the theory of maximum likelihood, and off-the-

shelf programs are available to handle all steps in experimental application—from initial

model coding to data analysis at the level of groups or individuals.

A notable strength of the QEM model is that it is mathematically principled. We

derived the model from general principles of quantum probability theory, instead of for-

mulating it specially to account for the episodic subadditivity phenomenon. In addition,

QEM is mathematically simple and conceptually intuitive. On the one hand, it only uses

a very small part of quantum theory, and the computation involved is simple. On the

other hand, in contrast to the common impression that quantum theory is counterintuitive,

QEM actually is quite intuitive at a process level. Its formalization of a superposition

state of memory captures the fundamental ambiguity and uncertainty in retrieval. Also, as

already discussed, the vector representations of verbatim and gist features are consistent

with a large group of memory models, which have been shown to explain a large range

of recognition and recall data (for a review, see Clark & Gronlund, 1996; Raaijmakers,

2008). In addition, it is worth noting that QEM provides a memory conception for dis-

tractor cues, whereas OD uses a bias conception for such cues.

Another strength of QEM is its generalizability. First, its vector representations of

memory are more abstract conceptions than the process ideas that motivate OD. As a

result, models that rely on such representations can span a broader range of episodic

memory data than OD, which was specifically formulated to model conjoint recognition

and related designs, such as process dissociation (e.g., Jacoby, 1991) and source monitor-

ing (e.g., Klauer & Kellen, 2010). Thus, although we used QEM to model data from such

designs, its potential scope of applications is much broader. Second, quantum probability

is a more encompassing variant of probability theory than the variant that is used in OD

(see Hughes, 1989). QEM is therefore able to accommodate a more extensive range of

empirical violations of classical probability. In fact, similar models derived from quantum

probability theory have been used to explain various cognitive phenomena that seem puz-

zling from a classical probability perspective (e.g., Aerts, 2009; Busemeyer, Pothos,

Franco, & Trueblood, 2011; Khrennikov & Haven, 2009; Pothos & Busemeyer, 2009;

Atmanspacher & Filk, 2010; Wang & Busemeyer, 2013; also see the introduction to this

special issue). This special issue presents many of these applications. In memory research,
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an example related to conjoint recognition is superadditivity of response probabilities. In

OD, response probabilities are subadditive, approaching additivity as a limit when V = 1

or G = 0. Superadditivity—that is, P(T) + P(R) < P(T[R)—is only allowed under certain

arrangements of the values of its bias parameters and is not allowed when the influence

of bias has been removed from P(T), P(R), and P(T[R). For superadditivity to be

allowed when bias has been removed, it would be necessary to relax the restriction that

the memory parameters (R, E, and I) must have the same values in all three instructional

conditions (see Section 3.1). However, that would require theoretical motivation and

would come at the cost of estimating additional memory parameters. That superadditivity

might occur in the conjoint recognition parameter is not entirely speculative because there

are examples of superadditive response probabilities in the closely related sphere of

human probability judgment (Fox, Ratner, & Lieb, 2005). A more complicated implemen-

tation of QEM (to include the quantum principle of noncommutative measures) could

accommodate various nonadditivity phenomena, including superadditivity.

In addition to the above differences between OD and QEM, it would obviously be

desirable if they predicted some contrasting empirical effects that could be used to pit the

models against each other in the arena of data. The challenge is to find an assortment of

such effects, and further analysis of the models will be necessary to identify them. How-

ever, one candidate has been noted: superadditivity. QEM can accommodate superadditiv-

ity and OD cannot when response bias is controlled without relaxing an important

assumption. The deeper question is whether QEM actually predicts superadditivity under

certain conditions (e.g., as OD predicts variations in subadditivity under certain condi-

tions). If so, those conditions would provide critical tests of the two models. Evidence of

superadditivity would be especially compelling when judged against the backdrop of

extant conjoint recognition experiments, which have yet to reveal anything other than su-

badditive and additive relations.
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Notes

1. The values of P(T), P(R), and P(T[R) for each data set in Fig. 1 were corrected for

response bias, using standard signal detection correction methods (Snodgrass &
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Corwin, 1988). Brainerd and Reyna (2008) showed that subadditive relations between

P(T) + P(R) and P(T[R) could be caused by differences in levels of response bias

for the three testing conditions (bT, bR, and bTR). Specifically, different test instruc-
tions (T, R, TR) may produce different levels of bias, and if the arrangement of those

differences happens to be (bT + bR) > bTR, that could create spurious subadditivity

between P(T) + P(R) and P(T[R) or inflate actual subadditivity.
2. To simplify presentation of the model, the equations do not contain the usual terms

for response bias. However, bias terms are always included in data analyses, and

the effects of bias are removed from all results. Thus, in considering these equa-

tions, simply assume that bias corrections are always present (see Appendix for dis-

cussion of response-bias parameters and the expanded version of the equations that

contain bias terms).

3. QEM and OD were fit to somewhat different data sets from the experiments. Spe-

cifically, OD was fit to a data set with 96 degrees of freedom (free empirical data

of probabilities) with separate probability data of the distractor for each target list,

while QEM was fit to a slightly simper version of the data set that had 64 degrees

of freedom with distractor data averaged across all three target lists.
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Appendix

Consider an experiment in which subjects encode events in two physically distinctive
contexts, List 1 and List 2. On memory tests, three types of cues (List 1 targets, List 2
targets, and distractors) are factorially crossed with three types of questions (Presented on
List 1? Presented on List 2? Presented on List 1 or List 2?). Thus, there are nine distinct
types of probes. For an item that was presented List 1, let pM,L1 be the probability of
accepting a probe that describes such an item as having been presented on List 1, let
pE,L1 be the probability of accepting a probe that describes such an item as having been
presented on List 2, and let pI,L1 be the probability of accepting a probe that describes
such an item as having been presented on either List 1 or List 2. For distractors, let pM,Ø

be the probability of accepting a probe that describes such an item as having been pre-
sented on List 1, let pE,Ø be the probability of accepting a probe that describes such an
item as having been presented on List 2, and let pI,Ø be the probability of accepting a
probe that describes such an item as having been presented on List 1 or List 2.

For an L1 target, R1 is the probability that it provokes recollection of List 1 contextual
details, E2 is the probability that it provokes recollection of List 2 contextual details, and
I1 is the probability that it provokes item memory without recollection of contextual
details. For a distractor, b1 is the probability that it is accepted when a probe asks if it
was presented on List 1 and when a probe asks if it was presented on List 2, and b1,1∪2 is
the probability that it is accepted when a probe asks if it was presented on either List 1
or List 2. These parameters measure response bias. The expressions for these empirical
probabilities are

pI;L1 ¼ R1 þ ð1� R1ÞE2 þ ð1� R1Þð1� E2ÞI1 þ ð1� R1Þð1� E2Þð1� I1Þb1;1[2; ðA1Þ

pE;L1 ¼ ð1� R1ÞE2 þ ð1� R1Þð1� E2ÞI1 þ ð1� R1Þð1� E2Þð1� I1Þb1; ðA2Þ

pM;L1 ¼ R1 þ ð1� R1Þð1� E2ÞI1 þ ð1� R1Þð1� E2Þð1� I1Þb1; ðA3Þ

pI;£ ¼ b1;1[2; ðA4Þ

pE;£ ¼ b1; ðA5Þ

and

pM;£ ¼ b1: ðA6Þ
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In this model, different response-bias parameters are estimated for List 2 than for List 1.
Those parameters are denoted b2 and b2,1[2.

For application to data, estimates can be obtained for the memory and bias parameters,
goodness-of-fit tests can be conducted, and within- and between-condition significance
tests of parameter values can be conducted. This is done by implementing Eqs. A1–A6 in
a multinomial modeling program. For items that are presented on List 2 rather than List
1, a set of expressions that parallel Eqs. A1–A6 can be written, from which parameter
estimates can be obtained and goodness-of-fit tests and parameter significance tests can
be conducted.

Next, consider a memory experiment like the one reported in this article, in which
subjects encode events in three contexts, List 1, List 2, and List 3. On a memory test,
four types of cues (List 1 targets, List 2 targets, List 3 targets, and distractors) are
factorially crossed with four types of questions (Presented on List 1? Presented on
List 2? Presented on List 3? Presented on either List 1 or List 2 or List 3?). Thus,
there are now 16 distinct probes. For List 1 targets, there are four types of probes
with associated empirical probabilities: pI,L1, pE2,L1, pE3,L1, and pM,L1. For distractors,
there are also four types of probes with associated empirical probabilities: pI,Ø, pE2,Ø,
pE3,Ø, and pM,Ø. The OD model’s expressions for these eight empirical probabilities
are as follows:

pI;L1 ¼R1 þ ð1� R1ÞE2 þ ð1� R1Þð1� E2ÞE3 þ ð1� R1Þð1� E2Þð1� E3ÞI1þ
ð1� R1Þð1� E2Þð1� E3Þð1� I1Þb1;1[2[3;

ðA7Þ

pE2;L1 ¼ ð1� R1ÞE2 þ ð1� R1Þð1� E2Þð1� E3ÞI1 þ ð1� R1Þð1� E2Þð1� E3Þð1� I1Þb1;
ðA8Þ

pE3;L1 ¼ð1� R1Þð1� E2ÞE3 þ ð1� R1Þð1� E2Þð1� E3ÞI1þ
ð1� R1Þð1� E2Þð1� E3Þð1� I1Þb1;

ðA9Þ

pM;L1 ¼ R1 þ ð1� R1Þð1� E2Þð1� E3ÞI1 þ ð1� R1Þð1� E2Þð1� E3Þð1� I1Þb1; ðA10Þ

pI;£ ¼ b1;1[2[3; ðA11Þ

pE2;£ ¼ b1; ðA12Þ

pE3;£ ¼ b1; ðA13Þ

and

pM;£ ¼ b1: ðA14Þ

In this model, different response-bias parameters are estimated for List 2 than for lists 1
and 3, and different response-bias parameters are estimated for List 3 than for lists 1 and
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2. The bias parameters for List 2 are denoted b2 and b2,1[2[3, and the bias parameters for
List 3 are denoted b3 and b3,1[2[3.

The only difference between this model and the model for two contexts is that there
are now two false memory parameters because a presented item can occupy either of two
false memory states. E2 is the probability that a List 1 target is falsely recollected being
presented on List 2. E3 is the probability that a List 1 target is falsely recollected as being
presented on List 3. For application to data, these expressions are simply implemented in
a multinomial modeling program, which estimates parameters, conducts goodness-of-fit
tests, and computes within- and between-condition significance tests of parameter values.
For items that are presented on List 2 rather than on List 1 or List 3 and for items that
are presented on List 3 rather than on List 1 or List 2, it is obvious that a set of expres-
sions that parallel Eqs. A7–A10 can be written, from which parameter estimates can be
obtained and goodness-of-fit tests and parameter significance tests can be conducted.
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