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This study was designed to further our understanding of the central role of motivational
activation in mediated information processing and media choice. To do this, a dynamic
model was developed to formalize the dynamic effects of three basic motivational input
variables (arousing content, positivity, and negativity) on four physiological output measures
(heart rate, skin conductance level, corrugator activity, and zygomatic activity) and a
behavioral choice measure of television channel selection. The input and output variables
were selected based on extensive theoretical and empirical research that has explicated
static relationships among these variables. In general, the findings of the dynamic modeling
approach were consistent with the previous literature using traditional static statistical
methods. However, this study also theoretically extended the previous work.
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For almost half a century, it has been generally acknowledged that communication is
a dynamic process occurring over time (Berlo, 1960). There has, however, been ‘‘very
little general, systematic examination of dynamic processes in the specific context of
communication’’ (VanLear & Watt, 1996, p. 3). This research seeks to help correct
this situation by introducing and testing a set of dynamic models that provide an
integrative conceptual framework of motivational processing and channel choice
behavior in the context of television viewing.

The dynamic models being proposed are built on psychological theories of
motivational processing (e.g., Cacioppo, Gardner, & Berntson, 1999; Lang, Bradley,
& Cuthbert, 1997; Williams, 2006) and Lang’s (2000, 2006a, 2006b) limited capacity
theory of motivated processing in a mediated environment. The models emphasize
motivational activation as a fundamental factor in information processing and choice
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behavior and aim to explain how the effects evolve dynamically. Hence, this set of
models is called the dynamic motivational activation (DMA) model. In this study,
the model is tested using real-time data indicative of motivational inputs, emotional
responses, cognitive effort, and channel choices.

Review of the theories

Motivational processing
Emotion plays a central role in our experience (Prinz, 2004), including mediated
experience. However, the adaptive functions, organization, and operating charac-
teristics of our emotion system point us toward the even more fundamental role of
motivation (e.g., P. Lang et al., 1997; Plutchik, 1984). This article takes the following
basic stance on studying the motivational processing of mediated messages: (a) It
follows the dimensional approach in emotion research and considers that emotion
is fundamentally organized around the appetitive and aversive motivational systems
designed by evolution to promote survival (e.g., Larsen, Norris, & Cacioppo, 2003).
Psychophysiological and neurophysiological research on emotion suggests that the
autonomic and behavioral responses to emotional stimuli reflect the underlying
neural and subcortical structures activated by the appetitive and aversive motivational
systems; motivational activation prepares and facilitates an organism’s appropriate
interaction with the environment (for a review, see Berntson & Cacioppo, 2008;
M. Bradley & P. Lang, 2000). Specifically, the dimensional approach posits that
activation in the appetitive or aversive systems elicits pleasant or unpleasant emotion,
which can be mapped onto a dimension or continuum of valence (from very pleasant
to very unpleasant); the intensity of the activation determines the emotional arousal
levels (from very calm to very arousing/aroused). These two dimensions, valence
and arousal, have been useful in parsimoniously describing both emotional media
content and media users’ emotional experiences (Ravaja, 2004; Bolls, A. Lang, &
Potter, 2001). (b) The two motivational systems are logically independent, although
not necessarily statistically uncorrelated; the dynamic activations of these two systems
appear to be variably synchronistic—their dynamic correlations can vary from −1
to 0 and sometimes can be positive, depending on the context (e.g., Zautra, Berkhof,
& Nicolson, 2002). (c) The motivational processes operate not only in our everyday
life but also during our experiences in the mediated world (P. Lang et al., 1997). Our
programmed-by-evolution psychophysiological systems react to mediated messages
as if they were real (A. Lang, 2000, 2006a, 2006b; Reeves & Nass, 1996).

A dynamic approach to understanding motivational processing
The primary theoretical importance of this study rests on its commitment to dynamic
information processing models and methodology. A. Lang’s (2006a, 2006b) limited
capacity model of motivated mediated message processing (LC4MP) is a theoretical
framework that applies a limited capacity information processing approach to
mediated environments. It is supported by a great deal of empirical work using
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real-time psychophysiological data. It is based on explanations of information
processing that are theorized to be modulated by motivational activation over
time. However, its predictions are limited in the sense that only the directions of
the information processing patterns, aggregated across time, can be proposed and
tested. This limitation arises from the reliance on static methods, such as analysis
of variance, for analyzing the data. The great potential to explicate the dynamic
interactions between messages and individual responses cannot be realized unless
formal (i.e., mathematical) dynamic models are employed. In other words, rich
information about dynamic processes still remains hidden in real-time data due to
the constraints of static analytical tools that aggregate the data over time (Beltrami,
1987; Luenberger, 1979). Therefore, formal dynamic modeling is the next logical
step in developing the LC4MP to a truly dynamic level as required by this theoretical
framework. This study is among the first efforts to do so (other efforts include
a connectionist model of attention and memory proposed by S. Bradley, 2007; a
stochastic model of media choices proposed by Wang, Busemeyer, & A. Lang, 2006).

The most general idea tested in this study is that key dependent variables (i.e.,
outputs) in information processing are causally influenced by motivational activation
elicited by mediated emotional content (i.e., inputs). The DMA formalizes these
multiple motivational inputs and outputs as a second-order linear stochastic system
with lagged input effects and autoregressive residuals. Each of the outputs is influenced
by three basic motivational input variables, their dynamic interactions, and feedback
from its own previous responses. The feedback effect term is critical: It is responsible
for the time it takes the physiological systems to be activated or deactivated with the
changes in motivational inputs (e.g., Wang & A. Lang, 2006) as well as the cumulative
effects of the inputs. This is discussed in detail in the section of Hypothesized
models. To the authors’ knowledge, this is the first attempt to build dynamic models
explaining the causal influence of motivational inputs on physiological outputs across
time. Previous research concerning time series models only involved analyses of the
physiological dependent variables across time which is mostly descriptive.

An integrative approach to the black box of motivational processing
Emotional media content elicits motivational activation in individuals, which drives
emotional experience. Although we cannot see directly into the black box of emotion
and motivation, empirical research has developed a set of measures that we can use
to infer what is happening in the box. P. Lang (1993) grouped measures of emotional
experience into three output systems: (a) behavioral measures, including overt or
functional behaviors and behavior modulations (e.g., fight, flight, and emotional
modulation of task performance); (b) language measures, including expressive com-
munication and evaluative report (e.g., verbal aggression, screams, and self-reported
emotion); and (c) physiological measures, including reactions in the viscera (e.g.,
sweat glands, cardiovascular system, and tear ducts); somatic muscles (e.g., corru-
gator supercilii, zygomaticus major, and general action muscles); the respiration,
endocrine, and immune system; and the brain.
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If motivation is a fundamental principle in emotional experience (M. Bradley &
P. Lang, 2000), it is necessary to understand the relationship between motivational
activation and the different emotional output systems. It is a common understanding
that these output systems vary in their action patterns to emotional stimuli, and both
concordance and discordance exist among their reactions (M. Bradley & P. Lang,
2000). At least two lines of research demonstrate the diversity and complexity of emo-
tional outputs. First, it has been observed that covariance among the output systems
generally accounts for less than 10–15% of the variance (P. Lang, 1968; Mandler,
Mandler, Kremen, & Sholiton, 1961). Second, the sensitivity and dynamics of those
output systems vary across individuals. For example, when people report emotional
experiences, hypersensitive individuals are more likely to focus on their own internal
physiological cues, whereas hyposensitive individuals are more likely to attend to envi-
ronmental cues (Blascovich, 1990). The complexity in these studies highlights why the
task of developing an integrative explanation of the variation in patterns within and
among the three emotional output systems remains ‘‘the central challenge to theory
and research in emotion’’ (M. Bradley & P. Lang, 2000, p. 245). Meanwhile, these
studies also suggest a possible response to this challenge—that is, through the simul-
taneous measurement and examination of multiple motivational output systems.

This study follows this suggestion and simultaneously measures the physiological
and behavioral outputs of message processing as a function of motivationally relevant
media content. All the dependent variables are recorded continuously while viewing
emotional television content and analyzed using time series models.

Hypothesized models

General hypotheses of DMA and specific models of physiological responses
The primary hypothesis of this study is that the temporal variance in psychophysi-
ological responses and channel-changing behavior during television viewing can be
explained by the dynamic effects of three motivational inputs—the level of arousing
content, positivity, and negativity in the media content (Hypothesis 1).

In addition, this study emphasizes that the effects of the three motivational
inputs will be dynamic. The effects of motivational inputs do not occur or cease
instantaneously, but instead, build up and ramp down over time (A. Lang, 2006a,
2006b; Wang & A. Lang, 2006). Also, the asymptotic level reached by the system
and the final magnitude of any effect depend on dynamic feedback factors. That
is, when a motivational input appears or increases, this onset or increase causes a
change in the physiological system that accumulates across time to build up to an
asymptotic level. When this motivational input is removed, the physiological system
deactivates over time. In other words, the physiological response is determined not
only by the current input but also by previous responses. Hence, we hypothesize that
the physiological systems should have feedback effects (Hypothesis 2.1). However, in
our review of the literature, we have discovered no studies that have investigated how
many orders of feedback terms (i.e., time lags) are needed to catch the dynamic time
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course of physiological responses. A second-order system is proposed here for two
major reasons. First, most time series analysis applications find two feedback terms to
be sufficient to catch the dynamics in the systematic part of a time series model (c.f.,
higher order models used in modeling the errors; Boker & Wenger, 2007; Chatfield,
1999; Harvey, 1990; Warren, 2006) and higher order feedback terms as a systematic
part of a model are rarely interpretable. Second, homeostasis of the physiological
system (Stern, Ray, & Quigley, 2001) suggests that the system has the tendency
and ability to remain in stable/equilibrium states, which is an inertial function;
additionally, after changes caused by external or internal factors, the system can
return to its original or resting state, which can be considered an oscillation function
(Buzsáki, 2006). For dynamic systems, a first-order feedback term can produce the
inertial effect, whereas a second-order feedback term can produce the oscillation effect.
Therefore, the first- and second-order feedback terms will be used in our models and
we will test whether these two feedback terms are sufficient to provide an account of
the dynamics of the physiological systems (Hypothesis 2.2). It is worth mention that
when the sampling interval is small enough to catch the variance of interest in the data,
decreasing the sampling interval can affect coefficients and error terms in a time series
model but does not change the function equation or the order of the dynamic system.
That is, a second-order system will remain adequate even if the sampling interval is
reduced. In this study, the sampling interval of model output data is 1 second. This
sampling rate should be adequate for our modeling purpose because it is faster than
the change rate of the input (i.e., motivational content from media) and also this rate
is commonly used to analyze the physiological responses measured in this study.

In addition, it is expected that there is a time delay between an onset or a
change in a motivational input and the physiological responses that it elicits. This is
because it takes time for the motivational inputs to reach and activate physiological
systems. Therefore, it is proposed that there will be time lags between the onset of the
motivational inputs and the physiological responses (Hypothesis 3).

Dynamic theory-driven hypotheses are expressed formally as difference or differ-
ential equations. To systematically test the dynamic effects of the three motivational
inputs on each physiological and behavior output, a second-order linear stochastic
difference equation model with delayed input effects and with autoregressive error
term is proposed. Basically, the proposed model is composed of two main parts: a
systematic model and an error model. The systematic model models the effects of
the three motivational inputs on the physiological response systems (i.e., Hypotheses
1 and 3) and the lagged feedback effects of the physiological system (i.e., the major
origin of the dynamics of the system that moderates and cumulates the motivational
input effects, expressed in Hypotheses 2.1 and 2.2). This is the focus of this study. To
accurately estimate the parameters for the systematic model, correlations between
errors should be modeled and removed; and in this study, an autoregressive model
is used for this purpose. The formal equation of the heart rate (HR) model is given
below to serve as an example for the four physiological models. Description and
rationales for the model are explained immediately following the equation under
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three subtitles— the lagged feedback effects of the physiological systems, the delayed
effects of motivational inputs, and the error.

H(t) = a1hH(t − 1) + a2hH(t − 2) + b0h + b1hA(t − dh) + b2hP(t − dh)

+ b3hN(t − dh) + b4hA2(t − dh) + b5hP2(t − dh) + b6hN2(t − dh)

+ b7hA(t − dh)P(t − dh) + b8hA(t − dh)N(t − dh)

+ b9hP(t − dh)N(t − dh) + eh.

The lagged feedback effects of the physiological systems
The term H(t) on the left-hand side of the equation is what we are trying to predict,
HR at time point t. The first two terms on the right-hand side of the equation,
a1hH(t − 1) and a2hH(t − 1), are the first- and second-order lagged feedback terms:
H(t − 1) and H(t − 2) are HR at time points t − 1 and t − 2, and their coefficients
are a1h and a2h. These are critical for explaining the time course of the system’s
response or output to a motivational input.

In a dynamic system, the output of the system depends on several factors: first, the
size and duration of the input effect, as the reader might expect; second, the lagged
feedback effect/coefficient. The same input can produce dramatically different outputs
simply by changing the lagged feedback coefficient of the system which determines the
speed, strength, and duration of the output (Boker & Wenger, 2007; Chatfield, 1999;
Harvey, 1990; Warren, 2006). A major strength of the proposed DMA model is that
it detangles, measures, and tests the input and the feedback effects (i.e., the two com-
ponents of the systematic model). This is different from conventional static analyses,
which aggregate the input and feedback effects, and sometimes mistakenly regard the
aggregated effect as the actual input/stimulus effect. In this article, the aggregated effect
will be referred to as the ‘‘total’’ effect to differentiate it from the actual input effects
(for a MATLAB simulation that demonstrates the importance of the feedback effects
in a dynamic system, see http://wongzheng.web.officelive.com/dynamics.aspx).

The delayed effects of motivational inputs
The remaining terms in the HR model with coefficients symbolized by bs represent
the causal effects of the motivational inputs on HR. This looks very much like
a regression equation on its face, but the effects generated by this model do not
behave like a regression model. As explained above, this is because the total effects
generated by this model include the dynamic response to input effects caused by the
feedback factors, a1hH(t − 1) and a2hH(t − 2). Based on a review of the literature, the
proposed input effects include all the possibly interesting theoretical effects, including
(a) main linear effects of the three motivational inputs (e.g., Ravaja, 2004)—arousing
content b1hA(t − dh), positivity b2hP(t − dh), and negativity b3hN(t − dh); (b) their
quadratic main effects (e.g., A. Lang, 2006a, 2006b)—b4hA2(t − dh), b5hP2(t − dh),
and b6hN2(t − dh); and (c) their two-way linear-by-linear interactions (e.g., Cacioppo
et al., 1999; Wang & A. Lang, 2006)—b7hA(t − dh)P(t − dh), b8hA(t − dh)N(t − dh),
and b9hP(t − dh)N(t − dh) (Hypothesis 4).
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Note that the input effects are delayed by a common amount dh. It represents the
hypothesized time lag for the physiological systems to respond to the motivational
inputs from the media content, as proposed in Hypothesis 3. This time delay will be
estimated from the data.

Lastly, in the HR model, there is also an intercept parameter, b0h. Generally, for
dynamic models, the intercept is meaningful as it can change the dynamic output
curve. In this case, however, detrending the data eliminated the intercept effect in
most of the data series. This is appropriate because this study focuses on explaining
the causal effects of the motivational inputs on the physiological systems and not on
modeling simple changes in the physiological systems over time (such as habituation
or adaptation).

The error
Finally, the model includes an error term, eh. In time series modeling, the error in data
also requires a dynamic model because there are statistical dependencies in the error
across time. If the autocorrelated error is not removed from the total variance, the
systematic model cannot be estimated correctly. Here, an autoregressive error model,
AR(p), was used to model the autocorrelated residuals, where p is the highest order of
the autoregressive terms. It was chosen for its flexibility and mathematical simplicity.
Two-model comparison criteria were used to search for the best AR(p) error model:
the Bayesian information criterion and the statistical significance of parameters for
each lagged error term in competing models. An AR(5) model was found to be
sufficient to capture most of the dependence in the over-time residuals—that is, the
error model includes lags 1–5.

The equations for the other three physiological variables follow the same form but
the value of the parameters are estimated separately for each variable. This allows the
models to accommodate the undoubtedly different feedback effects and time courses
of the different physiological systems.

Hypothesized dynamic model of channel choice behavior
A somewhat different model is proposed for channel-changing behavior. Channel
choice is viewed as a function of interest (I) in the channel which is theorized to be
a function of the motivational inputs of that channel. The equation below shows the
hypothesized model for interest as a function of the motivational inputs, with A(t)
representing the arousing content input at time t, P(t), the positivity input at time t,
and N(t), the negativity input at time t.

I(t) = b0 + b1A(t − d) + b2P(t − d) + b3N(t − d)

+ b4A2(t − d) + b5P2(t − d) + b6N2(t − d) + b7A(t − d)P(t − d)

+ b8A(t − d)N(t − d) + b9P(t − d)N(t − d) + e.

Like the physiological response models, this model includes estimates of the linear
and quadratic components of the main effects of the motivational inputs as well as
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their linear interactions. Also, it includes the time delay d. The rationales for including
these terms are similar to those proposed for the physiological models. In addition,
considering the explorative nature of this modeling effort and the focus on motiva-
tional input effects, we included these terms so that we could compare findings across
all the dependent variables. Note that a decision was made to keep this model simpler
by not including the feedback terms included in the physiological models. Although
previous viewing experience influences current viewing experience (e.g., Wang &
A. Lang, 2006), the binary choice (to switch vs. not to switch) in this experiment was
expected to be primarily influenced by the content being viewed at a given moment.

The next step is to model how interest influences channel choice. The probabilities
of the choices (e.g., stay on a channel or switch) are bounded by zero and one, and
the probability of choosing an option (e.g., stay) has been empirically found to be an
increasing S-shaped function of the strength of the option (i.e., interest in the chan-
nel) (e.g., Thurstone, 1927). Therefore, the relationship between interest and channel
choice must be nonlinear. Let S(t) = 1 if the person stays and S(t) = 0 if the person
switches at time t. Then, theoretically, this probability should be determined by the
motivational inputs through the interest function. Also, a time lag between the moti-
vational inputs and the choice behavior output should be considered. These lead to

Pr(S(t) = 1) = G(I(t − k)),

where G is an increasing function bounded by zero and one and k is the time lag. For
each participant, based on his or her own data, the best fitting time lag was selected
from 11 competing models (using lags from 0 to 10).

The probability function G, which is also called the link function in the generalized
linear model, is a logistic function (Hosmer & Stanley, 1989; Kleinbaum, 1994).

G(I) = 1

1 + exp(−I)
= exp(I)

1 + exp(I)
.

It is chosen here because it is the most commonly used and empirically supported
model for choice data (e.g., Hosmer & Stanley, 1989; Kleinbaum, 1994; McFadden,
1986; Sood & Tellis, 2005), and highly efficient programs are available in statistical
packages for estimating the model parameters. In particular, we used PROC LOGIS-
TIC in the SAS 9.1.3 statistical package, and we chose the maximum likelihood
method for parameter estimation. Note that by default, the PROC LOGISTIC proce-
dure in SAS models the probability of response levels with lower ordered value. That
is, in our case, the PROC LOGISTIC procedure predicts the probability of S(t) = 0
(switching channels at time t) as we defined earlier.

Method

Pretest and stimuli
Five 5-minute movie clips in each of the six emotional categories created by a Valence
(positive, negative) × Arousing Content (arousing, moderately arousing, and calm)
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factorial design were selected for the pretest. In total, 125 undergraduate students
(46.4% male, 76.8% White) with an average age of 20.44 (SD = 0.12) viewed and
rated the clips using the continuous response measurement (CRM; Biocca, Prabu,
& West, 1994) as implemented in MediaLab (Jarvis, 2004). The MediaLab program
recorded a respondent’s rating 10 times per second and then averaged these values
for each second of each 5-minute clip. The rating scale appeared on screen as a
0–100 scale and was automatically converted by MediaLab into a scale ranging from
0 to 2, precise to the hundredth. After viewing each clip, participants also rated how
positive, negative, and aroused the clip made them feel on a scale ranging from 1 (not
at all) to 9 (very much).

Each participant viewed and rated 15 randomly assigned and randomly ordered
clips. Across participants, all 30 clips were rated continuously on three scales: (a) how
aroused do you feel? (the arousing content scale); (b) how positive do you feel?
(the positivity scale); and (c) how negative do you feel? (the negativity scale). Each
participant watched a given clip once and rated that clip on only one of the three
CRM scales. The clips and scales were randomly assigned to participants in such a
way that each participant watched two to three clips in each emotional category,
rated five clips on each of the three CRM scales, and each clip was rated on all the
three CRM scales by a similar number of people.

Based on the average summative ratings for the clips, the final 24 messages
were selected as follows. The 12 clips that were rated highest on the positivity scale
(Ms > 5) and stayed below 3 on the negativity scale (Ms < 3) were selected as positive
clips; the 12 that were rated highest on negativity (Ms > 5) but stayed below 3 on
positivity (Ms < 3) were defined as negative clips. Then, within valence categories,
the 12 clips were ranked on arousing content and divided into three levels (arousing,
moderately arousing, and calm), with four in each level. A manipulation check
confirmed that arousing content levels, positivity, and negativity were manipulated
successfully (ps < .001 and Ms in the expected direction).

After the final 24 clips were selected, CRM data series were processed for each clip
to serve as dynamic motivational inputs for the DMA models. The median of CRM
ratings at each time point was selected as motivational input for that time point.
Finally, to test the reliability of CRM ratings, one CRM data point was randomly
selected from every 25 seconds of each clip, generating 12 rating points per clip.
Based on the 12 rating items, Cronbach’s α was computed for each rating on each
clip among the participants. The Cronbach’s α indicated that the CRM ratings were
reliable (Mα = .94, SDα = .03).

Experiment design
In the main experiment, participants watched television for 30 minutes. The television
had four available channels and participants were instructed to watch whatever they
would like to on the channels. They were informed that they could change channels
at will using a remote control and also practiced how to use the remote. In total, 6
of the 24 selected stimuli from the pretest were assigned to each channel, and they
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were edited together to form a coherent viewing session of 30 minutes (5 minutes
× 6 clips). There were three different viewing orders. Within each viewing order,
there were four different orders of presentation of the six clips on each of the four
channels. The within and between channel orders were designed to counterbalance
the position of clips with different valence and arousing content.

Dependent variables
Zygomatic and corrugator electromyography
These are conceptualized as indices of positive and negative emotional responses
which result from viewers’ appetitive and aversive activations respectively (Ito, Chiao,
Devine, Lorig, & Cacioppo, 2006; Larsen et al., 2003). The zygomaticus major muscle
group is located under the cheek and is involved in smiling. The corrugator supercilii
muscle group is located above each eyebrow and is involved in frowning. For all
the physiological measures in this study, an Ampac 386 computer with a LabMaster
AD/DA board, and Coulbourn S-series modular components were used to collect the
data. VPM 12.1 (Cook, 2000) was used to control the data collection process. For zygo-
matic and corrugator electromyography, muscle potentials were sampled at 20 Hz.

Skin conductance level
This is a measure of sympathetic nervous system activation that is theorized to
be related to motivational activation (M. Bradley & P. Lang, 2000). Higher skin
conductance level is attributed to increased activation in the sympathetic nervous
system which indexes higher physiological arousal and suggests more intense
motivational activation. The data were collected from the palm of the nondominant
hand sampled at 20 Hz.

HR
During resource allocation to external stimuli such as television messages, activation
of the parasympathetic nervous system increases, resulting in measurable decreases
in HR (A. Lang, 1994). Slower HR reflects greater cognitive effort. The intervals
between beats were recorded and then converted to beats per minute.

Channel changing
Channel changing is viewed as choice behavior which is a function of interest in
the motivational content of television programming. VPM recorded both the time
at which a channel change was made and the channel options (corresponding to
certain motivational content). Then, a MATLAB program was created to generate
the 1800-second long time series with one data point per second for each channel,
dummy-coding 1 for a time point if the channel was watched at that time and 0 if not.

Procedures and participants
Participants completed the 1.5-hour experiment individually. After the experimenter
demonstrated how to use the television remote control and attached electrodes to the
participant, the experimenter left the room and closed the door to provide privacy

80 Journal of Communication 61 (2011) 71–93 © 2011 International Communication Association



Z. Wang et al. Motivational Processing and Choice Behavior

during viewing. Then, the four 30-minute stimulus tapes were simultaneously played
on a wired set of four videocassette recorders (VCRs) outside the experiment room.
The participant watched the content on a 25-inch television that was connected to
the VCRs. While viewing, the participant could use the remote control to change
channels at any time. Participants’ physiological responses and channel-changing
behaviors were collected continuously during viewing. In total, data were obtained
from 67 participants. The average age was 21.13 (SD = 1.28, range 18–25); 41
(61.2%) were males; and the majority were White (80.3%), followed by Asian (8.5%),
African American (4.2%), and Hispanic (2.8%).

Modeling analysis and results

Time series data sets
For the dependent variables, time series were created for each participant using
four physiological measures and channel choice behavior obtained at a rate of
one observation per second for 1800 seconds. The physiological data were initially
processed by removing linear trends of time using the general linear model procedure
in SAS (PROC GLM) for each variable and each person. This detrending process is
needed because when using time (1800 time points) as a predictor, linear regression
tests found that time had a significant effect on each of the physiological variables (ps <

.001); but this general, nonstimulus-specific trend in the physiological responses is
not the focus of this study. After detrending, to put the physiological variables onto
the same scale for easier interpretation of the model parameters, the data were
transformed to standardized scores for each variable for each person.

To create the independent variables, three 1800-second time series were created
using the medians for arousing content, positivity, and negativity CRM data obtained
in the pretest. Next, because participants were in control of their channel-changing
behavior and therefore each participant viewed different video content at different
times, three time series were created for each participant based on their personal
channel viewing. A MATLAB program was created to align the CRM ratings in time
(i.e., second by second) with the video content actually watched by each participant.
For each participant, this data-matching procedure produced a series of 1800 seconds
of ratings for the three motivational inputs over time based on the person’s actual
viewing experience. Thus, for each participant, we obtained a data matrix consisting
of eight columns of variables (three inputs and five outputs) and 1800 rows of obser-
vations across time. This data set was used to estimate the parameters of the proposed
DMA models (for a visual representation of the raw data of a single participant’s
actual inputs and outputs, http://wongzheng.web.officelive.com/dynamics.aspx ).

Model fitting and model performance
For each participant, the proposed four physiological models were estimated using
maximum likelihood methods and PROC AUTOREG in the SAS software. To search
for the best delay lags for the motivational input effects, for each model and for
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Table 1 Descriptive Statistics of the Regression R2s of the Physiological Models (N = 67)

The Model Minimum Maximum Mean SD

HR 0.42 0.95 0.74 0.11
Skin conductance 0.81 0.99 0.96 0.04
Corrugator EMG 0.13 0.97 0.76 0.16
Zygomatic EMG 0.36 0.97 0.81 0.15

Note: HR = heart rate; EMG = electromyography.

each person, 11 lagged models (using lags from 0 to 10) were estimated. Based on
the regression R2 predicted by the systematic model, the best lag model was selected
for each physiological model for each individual. The average regression R2 across
all participants’ data sets is relatively large. The descriptive statistics are shown in
Table 1. On average, across the 67 participants’ individual data sets, the dynamic
models account for at least 74% of variance in the time series of the corresponding
physiological variable.

For the channel choice model, first, a chi-squared test was performed on the
hypothesized full model (with 10 parameters) compared with a restricted null model
(without parameters associated with the motivational input effects). The Bayesian
information criterion was used to evaluate the complete model compared with
the null model because its evaluation on models is based on both goodness of fit
and model complexity (Wasserman, 2000). For all the participants, the full model
exceeded the null model. Then, percentage of concordance (the percentage of correct
predictions across the 1800 time points) for each participant was used to examine
how well a model can predict compared with the real data. For each participant, the
best fitting lag model was selected from the 11 competing models with 0–10 lags.
Overall, the percentage of concordance for all the participants had a mean of 73.40
(SD = 7.37, range 61.00–94.30), suggesting that on average, the selected model can
predict 73.40% of data points for participants. In summary, the goodness of fit of the
four physiological models and the channel choice model supports Hypothesis 1.

Effects of motivational inputs
After model fitting for each model for each viewer, we obtained a set of 12 systematic
model parameters for each physiological variable from the best fit lag model and 10
for the channel choice model. First, multivariate analysis of variance (MANOVA)
was used to test the significance of the motivational effects on the physiological
responses and channel choice (i.e., parameters for A, P, N, A × P, A × N, P × N,
A2, P2, and N2). Each of the motivational input effects, as estimated by the model
parameters, was tested. For example, to test the linear effect of arousing content (i.e.,
the parameter for A), each individual’s parameters for A from all five of the models
were entered into the MANOVA test simultaneously.

Hotelling’s T2 was significant for the main effect of arousing content (both
the linear and quadratic components), its interactions with positivity and with
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negativity, and the quadratic component of the positivity main effect. For parameters
with significant Hotelling’s T2, Student’s t tests were performed on each parameter
for each model to determine: (a) whether the mean (across participants) of each
parameter differs significantly from zero, and (b) the sign and size of each parameter.
If the mean of a model parameter is significantly different from zero, this suggests
that the effect associated with the model parameter is significant. The sign and
size of the parameter tell us about the size and direction of the effect estimated by
each parameter. The motivational effects on physiological variables are summarized
in Table 2 and those on channel choice are summarized in Table 3. For easier
comparison across parameters, F values converted from t scores are reported.

Lagged responses of physiological systems
Next, we examined the feedback parameters that determine how quickly the moti-
vational inputs activate or deactivate the physiological systems. Specifically, the first
step is to determine how the physiological response feeds back on and influences
itself. t tests were conducted on the two lagged feedback parameters in each model
to determine the significance, direction, and size of the feedback effects. The results
are reported in Table 2. Supporting Hypotheses 2.1 and 2.2, all four physiological
systems have significant lag one and lag two feedback effects. As explained earlier, this
means that the asymptote for a system’s responses to motivational inputs depends
on not only the size and duration of the input effect but also the system’s feedback.
In addition, it is worth noting that these lagged feedback effects occur even after the
noise in the physiological time series data has been modeled with an autoregressive
(lag 5) model as described earlier. Therefore, we can exclude the possibility that these
feedback effects are due to autocorrelated error in the data series.

Delayed motivational input effects
Next, to determine how quickly the motivational inputs reach and produce an
effect on the physiological systems, the number of lags in the best-fit lagged model
for each participant and each model was examined. Recall that the model for
each physiological response uses the motivational inputs that occurred at a time
d seconds earlier to predict the current physiological response (Hypothesis 3). The
delay d is the lag parameter. Also recall that during our parameter estimation for
each physiological model, we compared each model with 11 different lags (0–10
lags/seconds) and selected the best fit for each participant. The results support
Hypothesis 3. Indeed, there were time lags between the onset of the motivational
inputs and the physiological responses. The mean for the only unimodal distribution,
HR lags, is 5.37 (SD = 2.99). For skin conductance level, the lags are bimodally
distributed (M = 5.25, SD = 3.15), with the dominant mode being 7 (n = 10) and
another peak at 2 (n = 8). For corrugator and zygomatic activities, the lags are also
bimodal (M = 4.49, SD = 3.31 and M = 4.94, SD = 3.34, respectively), with modes
at 0 (n = 10) and 5 (n = 9) for corrugator activity and 4 (n = 8) and 10 (n = 8)
for zygomatic activity. These distribution patterns suggest that participants showed
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Table 3 The Means and the F Values of the Parameters in the Channel-Changing Behavior
Model(N = 67)

Parameters of Effects Mean (SD) F Value Effect Size ε2

A −2.09 (0.74) 7.92∗ 0.11
A × P 0.53 (0.72) 0.55 0.008
A × N 1.56 (0.60) 6.80∗ 0.09
A2 0.79 (0.49) 2.63† 0.04
P2 −0.81 (0.98) 0.68 0.01

∗p < .05. †p < .10.

similar central tendency in HR changes as a function of motivational inputs, but the
bimodal distributions for the other measures suggest that there may be faster and
slower response groups for these physiological systems (for plots of the distributions
of lags for each physiological response across participants, see http://wongzheng.web.
officelive.com/dynamics.aspx).

Putting it all together: Dynamic effects of motivational inputs across time
In this final analysis, we put together all the reported effects and examine how each
physiological system responds dynamically to some selected motivational inputs
across time. This helps examine the integrated, ‘‘total’’ effects of the motivational
inputs on each system. In this section, the actual parameters for each physiological
system estimated from the real data are entered in the hypothesized models to
illustrate how the systems work in general. Following a common time series analysis
strategy, eight different combinations of the three motivational inputs, being set to
either ‘‘on’’ or ‘‘off’’ during a specific time period, are selected to demonstrate the
effects of arousing content, positivity, and negativity on the dynamic system. They
are (a) all three inputs are off, (b) only arousing content is on, (c) only positivity is
on, (d) only negativity is on, (e) arousing content and positivity are on but negativity
is off, (f) arousing content and negativity are on but positivity is off, (g) positivity
and negativity are on but arousing content is off, and (8) all three inputs are on. For
the last input condition, please note that this condition is not to test or demonstrate
a three-way interaction of the motivational inputs; instead, this condition examines
the integrated effect when all inputs are turned on—that is, the integrated effect
from all the hypothesized effect terms in the model. Then, we can observe, for each
of the eight conditions, how each system responds. This is one of the advantages
of mathematic modeling where the information of the participants’ responses is
extracted by the estimated model parameters, and our analysis and understanding
does not have to rely solely on the actual observation of human data.

For ease of interpretation, all the magnitudes of the three inputs are kept at .6.
This value is selected because it is moderate, which puts all eight combinations of
the inputs within the actual range of the experimental stimuli. Here, the use of a
step input (from zero to a fixed level) is the most commonly used analytic tool for

Journal of Communication 61 (2011) 71–93 © 2011 International Communication Association 85



Motivational Processing and Choice Behavior Z. Wang et al.

0 101 220 301 420 501 620 701 820 901 1020 1101 1220 1301 1420 1501 1620 1800
0

0.5

1

time

arousing 
content

0 101 220 301 420 501 620 701 820 901 1020 1101 1220 1301 1420 1501 1620 1800
0

0.5

1

time

positivity

0 101 220 301 420 501 620 701 820 901 1020 1101 1220 1301 1420 1501 1620 1800
0

0.5

1

time

negativity

2
a=.6
p=0
n=0

3
a=0
p=.6
n=0

4
a=0
p=0
n=.6

5
a=.6
p=.6
n=0

6
a=.6
p=0
n=.6

7
a=0
p=.6
n=.6

8
a=.6
p=.6
n=.6

1
a=0
p=0
n=0

0 A P N AP AN APNPN

Figure 1 Eight conditions of motivational inputs with arousing content, positivity, and
negativity being on and off during different time periods (input magnitude = .6).

analyzing the dynamic effects of inputs across time (Luenberger, 1979). The zero
setting allows the system to return to its natural baseline after each input is turned
on, allowing the activation and decay of an input combination to be examined
clearly. Otherwise, it would be difficult to decipher its effect in the figures. Figure 1
shows what the inputs look like. The step input duration is 120 seconds each and the
zero setting is 80 seconds each. For convenience of discussion, the eight conditions
are labeled as (1) 0, (2) A, (3) P, (4) N, (5) AP, (6) AN, (7) PN, and (8) APN. These
same eight input conditions are used to demonstrate all four dynamic models of
physiological responses across time, as shown in Figures 2a–d. For each figure, these
eight input conditions are always presented in text at the bottom of the figure with
the corresponding step input durations highlighted in gray.

As shown in Figure 2a, the HR pattern predicted by the dynamic model is very
much in line with the large amount of previous data measuring HR in response
to emotional media messages. That is, nonarousing (or calm) positive and negative
messages elicit only a slight change in HR. When arousing content is added to either
positive or negative messages, HR decelerates strongly (e.g., Öhman, Hamm, & Hug-
dahl, 2000). Interestingly, from previous research, little is known about how coactive
messages (containing both positive and negative content simultaneously) influence
HR, and this coactive condition was not intended to be manipulated and tested in
this study; however, as shown in Figure 2a, this dynamic model clearly predicts a HR
acceleration if the coactive messages are calm (Condition PN) and a HR deceleration
if they are arousing (Condition APN). Future research can test this prediction.

Figure 2b shows the dynamic changes in the skin conductance level. Arousing
content causes a large rise in skin conductance level (Condition A), which is consis-
tent with previous findings. It is interesting to see that when arousing content is set
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(b) Skin conductance level dynamic responses 
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(c) Corrugator EMG dynamic responses 
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(d) Zygomatic EMG dynamic responses  
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Figure 2 Dynamic physiological responses to motivational inputs with arousing content,
positivity, and negativity being on and off during different time periods (input magnitude
= .6), using averaged model parameters across all participants (N = 67). The predicted
physiological data are scaled with respect to the averaged actual physiological data Z scores
of all participants. (a) HR dynamic responses. (b) Skin conductance level dynamic responses.
(c) Corrugator EMG dynamic responses. (d) Zygomatic EMG dynamic responses.

to be off, a slight input of positivity or negativity (Conditions P and N) causes a skin
conductance level decrease. Although previous research did not control the level of
arousing content to be exactly zero, which seems to be practically impossible in exper-
iments involving real-world media stimuli, a large amount of research has examined
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calm positive and calm negative messages. Those empirical studies show exactly the
same response pattern as predicted by the model: Skin conductance decreases across
the course of calm messages. Unexpectedly, however, when arousing content is on,
along with either positivity or negativity (Conditions AP and AN), there is almost no
change in skin conductance levels. This is contrary to a large amount of published
empirical research and needs to be considered. Finally, for the seldom examined
coactive conditions (Conditions PN and APN), the model predicts small changes in
skin conductance level, especially when the content is not arousing. In general, this
model seems to be rather ‘‘nonresponsive’’ toward the various motivational input
conditions except for the condition of arousing content being turned on.

As Figure 2c illustrates, a clear pattern appears for corrugator responses to
motivational inputs: the presence of arousing content always reduces corrugator
activity greatly, especially when positivity is also presented. It is interesting to note
that when the input is positive but not arousing (Conditions P and PN), corrugator
activity does not show much change.

Figure 2d shows a surprising pattern of zygomatic responses with increased
zygomatic activity in response to negativity and nonarousing coactive content but
decreased zygomatic response toward arousing content or its copresentation with
positivity or negativity.

Discussion

In general, many of the findings of the dynamic time series modeling approach,
particularly the integrated effects of motivational inputs and system feedback, are
consistent with previous literature using traditional static methods. This DMA
mathematical implementation, however, makes three theoretical contributions that
extend previous work. First, it examines effects of motivational inputs during
information processing across time; second, it explores the dynamic, cumulative effects
of motivational inputs as determined by the feedback effects of the physiological
systems; third, it investigates channel choice behavior as a function of motivational
activation and connects the behavioral outcome with psychophysiological responses.

Effects of message arousing content, positivity, and negativity across time
Cacioppo and colleagues’ (1999) dual system model of emotion, and its application
and development in media research by the LC4MP, strongly supports the separability
of positivity and negativity. This study decomposed valence into separate positive
and negative affective components and formally examined their effects and their
interactions with arousing content across time. Consistent with previous research,
positivity and negativity were found to elicit appetitive or aversive responses and
arousing content was found to determine the intensity of the response.

The quadratic effect of arousing content was found to be robust. It was
significant and positive on HR, corrugator and zygomatic activities, and also on
channel-changing behavior—which means that the U shape of the quadratic trend
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opens upwards. These results suggest that as arousing content increases, cognitive
effort increases (indicated by an initial decrease in HR), which may result in less facial
expression and also a lower probability of changing channels. However, when the
message content becomes even more arousing, HR accelerates (in our data, at a value
of about .7 on the 0–2 rating scale for arousing content), leading to increased smiling
or frowning (for both, at about 1.2 on the 0–2 scales), which is coupled with an
increase in the probability of changing channels when the content is negative (around
1.3 on the 0–2 scale). This HR acceleration during very arousing messages is probably
due to behavioral preparation to approach when messages are extremely pleasant
and arousing or to withdraw when messages are extremely unpleasant and arousing.
Because cardiac activity is simultaneously controlled by the sympathetic nervous
system (SNS, dominant during mobilization) and the parasympathetic nervous
system (PNS, dominant during external attention), this HR acceleration may result
from the SNS activation dominating the PNS activation at the high levels of moti-
vational activation (Andreassi, 1995). It is worth pointing out that these findings are
consistent with research concerning the ‘‘intake–rejection’’ hypothesis (e.g., Lacey,
1967) and the cardiac–somatic concept (Obrist, Webb, Sutterer, & Howard, 1970),
which argue that cardiac deceleration facilitates information intake from the external
environment and cardiac acceleration rejects the incoming information to avoid
disruption of the current cognitive activity (e.g., imagination) or to facilitate prepara-
tion for behavioral responses (e.g., fight or flight). Previous empirical research guided
by LC4MP has largely supported those hypotheses using media message stimuli. This
study adds more support to these hypotheses. It provides stronger evidence of the
quadratic effect of arousing content in the sense that the estimated effect is per time
unit (per second, in this case) so that it is not confounded by stimulus durations and
the system feedback effects. The findings and the dynamic approach here can generate
insights to provide a better understanding of the role of arousing content, particularly
its optimal level, on advertising effectiveness (e.g., Pavelchak, Antil, & Munch, 1988)
and learning from the media (e.g., Grabe, A. Lang, Zhou, & Bolls, 2000).

Other findings of interest relate to the coactivation condition. Little empirical
data exist on how the physiological systems respond to coactivation of the two
motivation systems. The results produced by this model may be used to predict and
test the effects of coactivation on physiological responses in future studies. However,
caution should be used when doing so because the message stimuli in this study were
selected to be fairly unidimensional (i.e., high negativity and low positivity or vice
versa). Indeed, the Pearson correlation r between the CRM ratings of positivity and
negativity for these messages varies from −.79 to .23, suggesting a fairly low level
of coactivation. Any model parameter estimated using a single data set is restricted
to the data as well as the testing context, and researchers should be cautious not to
overgeneralize the findings. Nonetheless, it is still worth noting that in this study, the
presence of coactivation increases HR when the content is very calm but decreases HR
when the content is slightly arousing. More importantly, this study demonstrates the
utility of a dynamic modeling approach in understanding a large range of interesting
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media uses and effects phenomena concerning ‘‘coactivation,’’ such as enjoyment of
aversive media content (e.g., Oliver, 1993).

Lagged feedback effects of the physiological systems
Supporting the DMA prediction, our findings show that motivational effects do not
appear and disappear instantaneously with the onset or offset of motivational inputs.
The significant lagged feedback effects indicate that motivational inputs take time
to change and grow toward their equilibrium state. In other words, the feedback
effects determine the final level of growth and the cumulative effect produced by a
motivational input.

This also means that the duration of the inputs is critical because the size of the
observed motivational effects always depends on where the system is on the effect
evolution trajectory and how long it has been there. It is probably worthy of notice
that if researchers do not use the same durations in their stimulus presentations, they
may not be able to replicate each others’ findings even if the experimental designs
are very similar. In static analysis, this difference in input effects caused by stimulus
presentation duration is easily overlooked because only the factor manipulation
levels are considered. In time series modeling, however, this input duration difference
becomes critical and is examined. In addition, this dynamic approach may help us
better understand cumulative, long-term effects of media and extended exposure
to certain media content, such as desensitization to aggressive media content (e.g.,
Linz, Donnerstein, & Penrod, 1984; Thomas, 1982).

Limitations and implications
Several limitations of this study need to be noted. First, this study found that
skin conductance level was quite nonresponsive. This might result from the quick
habituation of skin conductance responses (Andreassi, 1995) and the long viewing
time in this experiment. Another possibility is that the structural complexity and
information density of stimuli were not controlled in this study, which can affect
physiological responses (e.g., Potter, A. Lang, & Bolls, 1998). Future studies should
either control or manipulate these factors.

Second, zygomatic activity did not conform to the pattern of results seen in
the literature. It sometimes increased with increasing negativity and decreased with
increasing positivity, which is the reverse of the expectation. This may be partially
caused by the fact that a great deal of the negative media content used in this study
is designed to be entertaining (A. Lang, 2000). In addition, it might be explained by
the findings in some recent studies that ‘‘a smile is a frown turned upside down’’
(Ansfield, 2007, p. 763). These studies found that people smile when distressed
because of their need for emotional self-regulation and self-presentation. Further
replications are needed to see whether the opposite response patterns of zygomatic
activity shown in this study are indeed replicable.

Third, for channel-changing behavior, because this study focused on examining
how it was affected by motivational content inputs, the channel choice model did
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not include any feedback term to test whether the current channel choice was
affected by previous choices. However, the emotional context created by television
programs has been found to affect subsequent advertising processing (e.g., Wang &
A. Lang, 2006), and attention during television viewing has been found to include
an inertial component (e.g., Anderson, Choi, & Lorch, 1987). These findings suggest
that previous channel choices may influence current choice. Future research should
examine whether the current channel choice is conditioned on previous choices, and
if so, how this conditioning interacts with different media content features.
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